
PERIYAR UNIVERSITY

(NAAC 'A++' Grade with CGPA 3.61 (Cycle - 3)

State University - NIRF Rank 56 - State Public University Rank 25

SALEM - 636 011

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

MASTER OF COMPUTER APPLICATION

SEMESTER - II

CORE IX : SOFT COMPUTING

(Candidates admitted from 2024 onwards)

PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

M.C.A 2024 admission onwards

Core– IX

Soft Computing

Prepared by:

 Centre for Distance and Online Education (CDOE)

 Periyar University

 Salem - 636011

SYLLABUS

SOFT COMPUTING

Unit I : INTRODUCTION TO SOFT COMPUTING: Artificial Neural Networks-

Biological Neurons- Basic Models of Artificial Neural Networks – Connections –

Learning-Activation Functions- Important Terminologies of ANNs- Muculloch and Pitts

Neuron-Linear Separability- Hebb Network-Flowchart of Training Process-Training

Algorithm.

Unit II : SUPERVISED LEARNING NETWORK : Perceptron Networks–Perceptron

Learning Rule – Architecture-Flowchart for Training Process-Perceptron Training

Algorithms for Single Output Classes-Perceptron Training Algorithm for Multiple Output

Classes-Perceptron Network Testing Algorithm - Adaptive Linear Neuron-Delta Rule

for Single Output Unit-Flowchart for training algorithm-Training Algorithm – Testing

Algorithm - Multiple Adaptive Linear Neurons- Architecture-Flowchart of Training

Process-Training Algorithm-Back Propagation Network – Architecture-Flowchart for

Training Process-Training Algorithm-Learning Factors of Back- Propagation Network-

Radial Basis Function Network – Architecture-Flowchart for Training Process-Training

Algorithm.

Unit III: UNSUPERVISED LEARNING NETWORK: Associative Memory Networks -

Auto Associative Memory Network– Architecture-Flowchart for Training Process-

Training Algorithm-Testing Algorithm- Bidirectional Associative Memory – Architecture-

Discrete Bidirectional Associative Memory-Iterative Auto Associative Memory Networks

- Linear Auto Associative Memory-Kohonen Self-Organizing Feature Map –

Architecture-Flowchart for Training Process-Training Algorithm.

Unit IV: INTRODUCTION TO FUZZY LOGIC: Classical Sets –Operations on

Classical Sets-Fuzzy sets - Fuzzy Sets- Properties of Fuzzy Sets- Fuzzy Relations –

Membership Functions: Fuzzification- Methods of Membership Value Assignments –

Defuzzification – Lambda-Cuts for Fuzzy sets and Fuzzy Relations – Defuzzification

Methods–Max-Membership Principle-Centroid Method-Weighted Average Method-

Mean Max Membership-Center of Sums-Center of Largest Area-First of Maxima

Unit V: GENETIC ALGORITHM: Introduction -Biological Background - Basic

Operators and terminologies in Genetic algorithm- Search Space- Effects of genetic

Operators – Traditional Vs Genetic Algorithm - Simple GA- General Genetic Algorithm-

The Scheme Theorem - Applications

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

1 Periyar University – CDOE| Self-Learning Material

 TABLE OF CONTENTS

UNIT TOPICS PAGE

1 Introduction To Soft Computing 1

2 Supervised Learning Network 37

3 Unsupervised Learning Network 82

4 Introduction To Fuzzy Logic 135

5 Genetic Algorithm 181

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

2 Periyar University – CDOE| Self-Learning Material

INTRODUCTION TO SOFT COMPUTING

Introduction To Soft Computing

UNIT 1 – INTRODUCTION TO SOFT COMPUTING

Unit I : INTRODUCTION TO SOFT COMPUTING: Artificial Neural Networks-

Biological Neurons- Basic Models of Artificial Neural Networks – Connections –

Learning-Activation Functions- Important Terminologies of ANNs- Muculloch and

Pitts Neuron-Linear Separability- Hebb Network-Flowchart of Training Process-

Training Algorithm.

Section Topic Page No.

UNIT – I

Unit Objectives

Section 1.1 Introduction To Soft Computing 1

1.1.1 Artificial Neural Networks 3

1.1.2 Biological Neurons 5

1.1.3 Basic Models of Artificial Neural Networks 9

1.1.4 Connections 10

1.1.5 Learning 11

1.1.6 Activation Functions 13

1.1.7 Important Terminologies of ANN 19

1.1.8 Muculloch and Pits Neurons 21

1.1.9 Linear Separability 21

1.1.10 Hebb Network 23

1.1.11 Flowchart of Training Process 24

1.1.12 Training Algorithm 24

1.2 Let Us Sum Up 26

1.3 Check Your Progress 26

1.4 Unit- Summary 31

1.5 Glossary 31

1.6 Self- Assessment Questions 33

1.7 Activities / Exercises / Case Studies 34

1.8 Answers for Check your Progress 35

1.9 References and Suggested Readings 36

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

3 Periyar University – CDOE| Self-Learning Material

PRINCIPLES OF SOFT COMPUTING
The course "Introduction to Soft Computing: Artificial Neural Networks" aims to

provide students with a comprehensive understanding of artificial neural networks

(ANNs), starting from their biological inspiration to the basic models and terminologies.

Through the exploration of connections, learning mechanisms, and activation

functions, students will grasp the fundamental principles underlying ANNs.

Additionally, the course will delve into advanced concepts such as linear separability,

Hebb networks, and the training process, equipping students with the knowledge and

skills to design and implement neural network models effectively.

Artificial Neural Networks contain artificial neurons which are called units.

These units are arranged in a series of layers that together constitute the whole

Artificial Neural Network in a system. A layer can have only a dozen units or millions

of units as this depends on how the complex neural networks will be required to learn

the hidden patterns in the dataset. Commonly, Artificial Neural Network has an input

layer, an output layer as well as hidden layers. The input layer receives data from the

outside world which the neural network needs to analyze or learn about. Then this

data passes through one or multiple hidden layers that transform the input into data

that is valuable for the output layer. Finally, the output layer provides an output in the

form of a response of the Artificial Neural Networks to input data provided.

In the majority of neural networks, units are interconnected from one layer to

another. Each of these connections has weights that determine the influence of one

unit on another unit. As the data transfers from one unit to another, the neural network

learns more and more about the data which eventually results in an output from the

output layer.

The structures and operations of human neurons serve as the basis for artificial

neural networks. It is also known as neural networks or neural nets. The input layer of

an artificial neural network is the first layer, and it receives input from external sources

and releases it to the hidden layer, which is the second layer. In the hidden layer, each

neuron receives input from the previous layer neurons, computes the weighted sum,

1.1 INTRODUCTION TO SOFT COMPUTING
1.1.1 – Artificial Neural Networks

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

4 Periyar University – CDOE| Self-Learning Material

and sends it to the neurons in the next layer. These connections are weighted means

effects of the inputs from the previous layer are optimized more or less by assigning

different-different weights to each input and it is adjusted during the training process

by optimizing these weights for improved model performance.

ARTIFICIAL NEURONS VS BIOLOGICAL NEURONS

The concept of artificial neural networks comes from biological neurons found in

animal brains So they share a lot of similarities in structure and function wise.

Structure: The structure of artificial neural networks is inspired by biological

neurons. A biological neuron has a cell body or soma to process the impulses,

dendrites to receive them, and an axon that transfers them to other neurons. The

input nodes of artificial neural networks receive input signals, the hidden layer nodes

compute these input signals, and the output layer nodes compute the final output by

processing the hidden layer’s results using activation functions.

Biological Neuron Artificial Neuron

Dendrite Inputs

Cell nucleus or Soma Nodes

Synapses Weights

Axon Output

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

5 Periyar University – CDOE| Self-Learning Material

Synapses: Synapses are the links between biological neurons that enable the

transmission of impulses from dendrites to the cell body. Synapses are the weights

that join the one-layer nodes to the next-layer nodes in artificial neurons. The strength

of the links is determined by the weight value.

Learning: In biological neurons, learning happens in the cell body nucleus or

soma, which has a nucleus that helps to process the impulses. An action potential is

produced and travels through the axons if the impulses are powerful enough to reach

the threshold. This becomes possible by synaptic plasticity, which represents the

ability of synapses to become stronger or weaker over time in reaction to changes in

their activity. In artificial neural networks, backpropagation is a technique used for

learning, which adjusts the weights between nodes according to the error or

differences between predicted and actual outcomes.

 Biological neuron models, also known as spiking neuron models,[1] are

mathematical descriptions of the conduction of electrical signals in neurons. Neurons

(or nerve cells) are electrically excitable cells within the nervous system, able to fire

electric signals, called action potentials, across a neural network. These mathematical

models describe the role of the biophysical and geometrical characteristics of neurons

on the conduction of electrical activity.

 Central to these models is the description of how the membrane potential (that is,

the difference in electric potential between the interior and the exterior of a biological

cell) across the cell membrane changes over time. In an experimental setting,

stimulating neurons with an electrical current generates an action potential (or spike),

that propagates down the neuron's axon. This axon can branch out and connect to a

large number of downstream neurons at sites called synapses. At these synapses, the

spike can cause release of neurotransmitters, which in turn can change the voltage

potential of downstream neurons. This change can potentially lead to even more

spikes in those downstream neurons, thus passing down the signal. As many as 85%

of neurons in the neocortex, the outermost layer of the mammalian brain, consist of

excitatory pyramidal neurons,[2][3] and each pyramidal neuron receives tens of

thousands of inputs from other neurons.[4] Thus, spiking neurons are a major

1.1.2 – Biological Neurons

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

6 Periyar University – CDOE| Self-Learning Material

information processing unit of the nervous system.

 One such example of a spiking neuron model may be a highly detailed

mathematical model that includes spatial morphology. Another may be a conductance-

based neuron model that views neurons as points and describes the membrane

voltage dynamics as a function of trans-membrane currents. A mathematically simpler

"integrate-and-fire" model significantly simplifies the description of ion channel and

membrane potential dynamics (initially studied by Lapique in 1907).

BIOLOGICAL BACKGROUND, CLASSIFICATION, AND AIMS OF NEURON

MODELS

Non-spiking cells, spiking cells, and their measurement

Not all the cells of the nervous system produce the type of spike that define the

scope of the spiking neuron models. For example, cochlear hair cells, retinal receptor

cells, and retinal bipolar cells do not spike. Furthermore, many cells in the nervous

system are not classified as neurons but instead are classified as glia.

Neuronal activity can be measured with different experimental techniques, such

as the "Whole cell" measurement technique, which captures the spiking activity of a

single neuron and produces full amplitude action potentials.

With extracellular measurement techniques, one or more electrodes are placed

in the extracellular space. Spikes, often from several spiking sources, depending on

the size of the electrode and its proximity to the sources, can be identified with signal

processing techniques. Extracellular measurement has several advantages:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

7 Periyar University – CDOE| Self-Learning Material

 It is easier to obtain experimentally;

 It is robust and lasts for a longer time;

 It can reflect the dominant effect, especially when conducted in an anatomical

region with many similar cells.

Biological neurons and artificial neurons based on the provided criteria:

Speed of Execution:

 Artificial neurons in ANNs have execution speeds on the order of microseconds,

much faster than the millisecond-scale speeds of biological neurons. This faster

execution is due to the efficiency of digital computation in artificial systems.

Processing Capability:

 Biological neurons can perform massive parallel operations simultaneously,

mimicking the brain's ability to process vast amounts of information

concurrently. While artificial neurons in ANNs can also perform parallel

operations, they generally operate faster than biological neurons.

Size and Complexity:

 The human brain contains approximately 1011 neurons and 1015

interconnections, resulting in a highly complex computational network. In

contrast, the size and complexity of an artificial neural network depend on the

chosen application and network design. While ANNs can be complex, they

typically do not reach the scale of the human brain.

Storage Capacity:

 Biological neurons store information in interconnections and synapse strength.

In artificial neurons, information is stored in contiguous memory locations. The

brain's adaptability allows for the addition of new information without disrupting

older memories, whereas continuous loading of new information in artificial

neurons can overload memory locations

Tolerance to Faults:

 Biological neurons exhibit fault tolerance, enabling them to store and retrieve

information even when network connections are disrupted. Artificial neurons,

however, lack fault tolerance, and network disruptions can corrupt stored

1.1.2 – Brain Vs. Computer - Comparison Between Biological Neuron And Artificial Neuron

(Brain vs. Computer)

Biological Neurons

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

8 Periyar University – CDOE| Self-Learning Material

information. Biological neurons can also accept redundancies, ensuring

efficient performance even with cell loss.

Control Mechanism:

 In artificial neurons modeled on computers, a control unit in the Central

Processing Unit manages scalar values between units. In contrast, the strength

of biological neurons depends on active chemicals and synaptic connections.

While biological neurons involve complex chemical actions, artificial neurons

operate with simpler interconnections and do not rely on chemical processes.

Evolution of Neural Networks

The evolution of neural networks along with the names of their designers and brief

descriptions of each network.

1. McCulloch and Pitts Neuron (1943):

 Designers: McCulloch and Pitts

 Description: This network consists of neurons arranged in a combination

of logic functions, introducing the concept of a threshold for neuron

activation.

2. Hebb Network (1949):

 Designer: Hebb

 Description: Based on the principle that simultaneous activation of two

neurons strengthens their connection, known as Hebbian learning.

3. Perceptron (1958):

 Designer: Rosenblatt

 Description: A network where weights on connection paths can be

adjusted, allowing for learning from input-output pairs.

4. Adaline (1960):

 Designers: Widrow and Hoff

 Description: Stands for Adaptive Linear Neuron. Adjusts weights to

minimize the difference between the net input and the desired output,

typically using mean squared error.

5. Kohonen Self-Organizing Feature Map (1972):

 Designer: Kohonen

 Description: Clusters inputs together to activate output neurons using a

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

9 Periyar University – CDOE| Self-Learning Material

winner-take-all policy, enabling self-organization of input patterns.

6. Hopfield Network (1982):

 Designer: Hopfield and Tank

 Description: Utilizes fixed weights and acts as an associative memory

network, capable of recalling stored patterns.

7. Backpropagation Network (1986):

 Designers: Rumelhart, Hinton, and Williams

 Description: Multi-layer network where errors are propagated backward

from output to hidden units during training, enabling efficient learning of

complex patterns.

8. Counterpropagation Network (1988):

 Designer: Grossberg

 Description: Similar to the Kohonen network but with learning occurring

for all units in a layer simultaneously, without competition among units.

9. Adaptive Resonance Theory (1987-1990):

 Designers: Carpenter and Grossberg

 Description: Designed for both binary and analog inputs, capable of

adapting to input patterns presented in any order.

10. Radial Basis Function Network (1988):

 Designers: Broomhead and Lowe

 Description: Resembles a backpropagation network but uses a

Gaussian activation function, often employed in character recognition

tasks.

11. Neocognitron (1988):

 Designer: Fukushima

 Description: Corrects deficiencies in earlier cognition networks and is

essential for character recognition tasks.

Each entry represents a milestone in the development of neural networks, introducing

new concepts, architectures, and learning algorithms that have paved the way for

modern neural network applications.

The basic models of artificial neural networks (ANNs), focusing on their synaptic

1.1.3 –Basic Models of Artificial Neuron Networks

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

10 Periyar University – CDOE| Self-Learning Material

interconnections, training rules, and activation functions. Let's break down the key

points:

1. Model's Synaptic Interconnections:

 Arrangement in Layers: ANNs consist of interconnected processing elements

(neurons) organized in layers.

 Interconnections: Each neuron's output is connected through weights to other

neurons or to itself.

 Types of Connections: Delay lead and lag-free connections are allowed,

forming various network architectures.

2. Training or Learning Rules:

 Update and Adjust Weights: Learning in ANNs involves adjusting connection

weights based on training data.

 Training Rules: Different algorithms are used to update weights during

training, such as backpropagation, Hebbian learning, and reinforcement

learning.

3. Activation Functions:

 Function of Neurons: Neurons in ANNs apply activation functions to their net

inputs to produce output signals.

 Types of Activation Functions: Common activation functions include

sigmoid, ReLU, tanh, and softmax, each serving different purposes in neural

network modeling.

Types of Neural Network Architectures:

1. Single-Layer Feed-Forward Network:

 Simplest architecture consisting of input and output layers with direct

connections between them.

 Each input is connected to output nodes with various weights.

2. Multilayer Feed-Forward Network:

 Consists of interconnected layers, including input, hidden, and output

layers.

 Hidden layers provide additional processing and abstraction.

3. Single Node with Its Own Feedback:

 Involves a single neuron with feedback to itself, forming a recurrent

network.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

11 Periyar University – CDOE| Self-Learning Material

 Feedback can be lateral (within the same layer) or recurrent (within the

same neuron).

4. Single-Layer Recurrent Network:

 Feedback connections allow outputs to be directed back to the same

layer or preceding layers.

 Enables memory and temporal processing.

5. Multilayer Recurrent Network:

 Similar to single-layer recurrent networks but with multiple layers.

 Recurrent connections can exist between neurons in the same layer or

across layers.

Additional Network Architectures:

 Competitive Nets: Feature competitive interconnections with fixed weights.

 On-Center-Off-Surround (Lateral Inhibition) Structure: Involves excitatory

and inhibitory inputs to each neuron, regulating responses based on nearby

and distant inputs.

 These architectures provide solutions to various problems by effectively

utilizing ANN capabilities.

Learning in ANNs:

1. Types of Learning:

 Parameter Learning: This type of learning involves adjusting the

weights of connections between neurons in the neural network. The goal

is to minimize the error between the actual output and the desired output.

 Structure Learning: In structure learning, the architecture of the neural

network itself is adjusted. This includes changing the number of neurons

in each layer, adding or removing layers, and modifying the connections

between neurons.

2. Categories of Learning:

 Supervised Learning: In supervised learning, the network is trained on

a dataset where each input is associated with a corresponding target

output. The network learns to map inputs to outputs by minimizing the

difference between its predictions and the actual targets.

 Unsupervised Learning: Unsupervised learning involves training the

network on unlabelled data. The network learns to find patterns and

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

12 Periyar University – CDOE| Self-Learning Material

structure in the data without explicit guidance.

 Reinforcement Learning: Reinforcement learning is a type of learning

where an agent learns to make decisions by interacting with an

environment. The agent receives feedback in the form of rewards or

penalties based on its actions and uses this feedback to adjust its

behavior over time.

Supervised Learning:

 Teacher-Guided Learning: Supervised learning is akin to learning with a

teacher guiding the process. The teacher provides the correct answers (labels)

for each input during training.

 Training Pairs: Each training example consists of an input and its

corresponding target output. The network learns to produce outputs that are as

close as possible to the targets.

 Error Minimization: During training, the network's output is compared to the

target output, and an error signal is computed. The network adjusts its weights

to minimize this error.

Unsupervised Learning:

 Independent Learning: In unsupervised learning, the network learns to find

structure in the data without explicit guidance from a teacher.

 Grouping Input Patterns: The network organizes input patterns into clusters

based on similarities between them. This allows the network to discover hidden

patterns or relationships in the data.

 No Feedback from Environment: Unlike supervised learning, where the

network receives feedback on its performance, unsupervised learning occurs

without explicit feedback from the environment.

 Block Diagram: Figure 2-13 illustrates the unsupervised learning process,

showing how the network organizes input patterns into clusters.

Reinforcement Learning:

 Feedback from Environment: Reinforcement learning involves an agent

interacting with an environment and receiving feedback in the form of rewards

or penalties.

 Adjustment of Weights: The agent adjusts its behavior based on the feedback

it receives from the environment. This typically involves adjusting the weights

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

13 Periyar University – CDOE| Self-Learning Material

of connections in the neural network to maximize rewards or minimize

penalties.

 Similar to Supervised Learning: While reinforcement learning shares

similarities with supervised learning, the feedback provided to the agent is

evaluative rather than instructive.

 Block Diagram: Figure 2-14 illustrates the reinforcement learning process,

showing how the agent interacts with the environment and adjusts its behavior

based on the feedback it receives.

Activation Functions:

 Role of Activation Function: Activation functions determine the output of a

neuron based on its input. They introduce nonlinearity into the network, allowing

it to model complex relationships between inputs and outputs.

 Integration Function: Activation functions integrate input signals from other

neurons or external sources to produce a net input for the neuron.

 Types of Activation Functions: There are several types of activation

functions, including identity, binary step, bipolar step, sigmoidal (binary and

bipolar), and ramp functions. Each type has its own characteristics and is

suitable for different types of tasks.

Understanding these aspects of learning and activation functions is crucial for

effectively designing and training neural networks for various applications.

Overview of neuron models

Neuron models can be divided into two categories according to the physical units of

the interface of the model. Each category could be further divided according to the

abstraction/detail level:

1. Electrical input–output membrane voltage models – These models produce a

prediction for membrane output voltage as a function of electrical stimulation

given as current or voltage input. The various models in this category differ in

the exact functional relationship between the input current and the output

voltage and in the level of detail. Some models in this category predict only the

moment of occurrence of output spike (also known as "action potential"); other

models are more detailed and account for sub-cellular processes. The models

in this category can be either deterministic or probabilistic.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

14 Periyar University – CDOE| Self-Learning Material

2. Natural stimulus or pharmacological input neuron models – The models in this

category connect the input stimulus which can be either pharmacological or

natural, to the probability of a spike event. The input stage of these models is

not electrical but rather has either pharmacological (chemical) concentration

units, or physical units that characterize an external stimulus such as light,

sound or other forms of physical pressure. Furthermore, the output stage

represents the probability of a spike event and not an electrical voltage.

Although it is not unusual in science and engineering to have several descriptive

models for different abstraction/detail levels, the number of different, sometimes

contradicting, biological neuron models is exceptionally high. This situation is partly

the result of the many different experimental settings, and the difficulty to separate the

intrinsic properties of a single neuron from measurement effects and interactions of

many cells (network effects).

The scope of research in the domain of activation functions remains limited and

centered around improving the ease of optimization or generalization quality of neural

networks (NNs). However, to develop a deeper understanding of deep learning, it

becomes important to look at the non linear component of NNs more carefully. In this

paper, we aim to provide a generic form of activation function along with appropriate

mathematical grounding so as to allow for insights into the working of NNs in future.

We propose "Self-Learnable Activation Functions" (SLAF), which are learned during

training and are capable of approximating most of the existing activation functions.

SLAF is given as a weighted sum of pre-defined basis elements which can serve for

a good approximation of the optimal activation function. The coefficients for these

basis elements allow a search in the entire space of continuous functions (consisting

of all the conventional activations). We propose various training routines which can be

used to achieve performance with SLAF equipped neural networks (SLNNs). We

prove that SLNNs can approximate any neural network with lipschitz continuous

activations, to any arbitrary error highlighting their capacity and possible equivalence

with standard NNs. Also, SLNNs can be completely represented as a collections of

finite degree polynomial upto the very last layer obviating several hyper parameters

1.1.4 – Learning Activation Functions

Biological Neurons

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

15 Periyar University – CDOE| Self-Learning Material

like width and depth. Since the optimization of SLNNs is still a challenge, we show that

using SLAF along with standard activations (like ReLU) can provide performance

improvements with only a small increase in number of parameters.

Variants of Activation Function

Linear Function

 Equation : Linear function has the equation similar to as of a straight line

i.e. y = x

 No matter how many layers we have, if all are linear in nature, the final

activation function of last layer is nothing but just a linear function of the

input of first layer.

 Range : -inf to +inf

 Uses : Linear activation function is used at just one place i.e. output

layer.

 Issues : If we will differentiate linear function to bring non-linearity, result

will no more depend on input “x” and function will become constant, it

won’t introduce any ground-breaking behavior to our algorithm.

For example : Calculation of price of a house is a regression problem. House price

may have any big/small value, so we can apply linear activation at output layer.

Even in this case neural net must have any non-linear function at hidden layers.

Sigmoid Function

 It is a function which is plotted as ‘S’ shaped graph.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

16 Periyar University – CDOE| Self-Learning Material

 Equation : A = 1/(1 + e-x)

 Nature : Non-linear. Notice that X values lies between -2 to 2, Y values

are very steep. This means, small changes in x would also bring about

large changes in the value of Y.

 Value Range : 0 to 1

 Uses : Usually used in output layer of a binary classification, where result

is either 0 or 1, as value for sigmoid function lies between 0 and 1 only

so, result can be predicted easily to be 1 if value is greater

than 0.5 and 0 otherwise.

Tanh Function

 The activation that works almost always better than sigmoid function is

Tanh function also known as Tangent Hyperbolic function. It’s actually

mathematically shifted version of the sigmoid function. Both are similar

and can be derived from each other.

 Equation :-

f(x) = tanh(x) = 2/(1 + e-2x) – 1

OR

tanh(x) = 2 * sigmoid(2x) – 1

 Value Range :- -1 to +1

 Nature :- non-linear

 Uses :- Usually used in hidden layers of a neural network as it’s values

lies between -1 to 1 hence the mean for the hidden layer comes out be 0

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

17 Periyar University – CDOE| Self-Learning Material

or very close to it, hence helps in centering the data by bringing mean

close to 0. This makes learning for the next layer much easier.

RELU Function

 It Stands for Rectified linear unit. It is the most widely used activation

function. Chiefly implemented in hidden layers of Neural network.

 Equation :- A(x) = max(0,x). It gives an output x if x is positive and 0

otherwise.

 Value Range :- [0, inf)

 Nature :- non-linear, which means we can easily backpropagate the

errors and have multiple layers of neurons being activated by the ReLU

function.

 Uses :- ReLu is less computationally expensive than tanh and sigmoid

because it involves simpler mathematical operations. At a time only a few

neurons are activated making the network sparse making it efficient and

easy for computation.

In simple words, RELU learns much faster than sigmoid and Tanh function.

Softmax Function

The softmax function is also a type of sigmoid function but is handy when we are

trying to handle multi- class classification problems.

 Nature :- non-linear

 Uses :- Usually used when trying to handle multiple classes. the softmax

function was commonly found in the output layer of image classification

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

18 Periyar University – CDOE| Self-Learning Material

problems.The softmax function would squeeze the outputs for each class

between 0 and 1 and would also divide by the sum of the outputs.

 Output:- The softmax function is ideally used in the output layer of the

classifier where we are actually trying to attain the probabilities to define

the class of each input.

 The basic rule of thumb is if you really don’t know what activation

function to use, then simply use RELU as it is a general activation

function in hidden layers and is used in most cases these days.

 If your output is for binary classification then, sigmoid function is very

natural choice for output layer.

 If your output is for multi-class classification then, Softmax is very useful

to predict the probabilities of each classes

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

19 Periyar University – CDOE| Self-Learning Material

o Activation Function

o Weights

o Bias

o Threshold

o Learning Rate

o Momentum Factor.

Artificial Neural Networks (ANN) serve as the bedrock of modern machine learning,

enabling computers to emulate cognitive processes. In navigating the intricacies of

ANN, it is pivotal to grasp fundamental terminologies that shape their architecture and

functionality.

Activation Function:

Activation functions introduce non-linearity to the network, enabling it to learn

complex patterns. Two widely used activation functions are:

Sigmoid Function:

This function squashes input values to a range between 0 and 1, making it suitable for

binary classification problems.

Rectified Linear Unit (ReLU):

ReLU, a popular choice for hidden layers, introduces non-linearity by allowing positive

values to pass through unchanged.

Weights:

Weights signify the strength of connections between neurons. During training,

these weights get adjusted to minimize the difference between predicted and actual

outputs.

Bias:

Bias provides flexibility to the model by allowing it to fit the data better. It is an

additional parameter in neurons, facilitating better model performance.

Threshold:

1.1.5 –Important Terminology of Artificial Neural Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

20 Periyar University – CDOE| Self-Learning Material

In threshold activation functions, if the weighted sum of inputs surpasses a

predefined threshold, the neuron activates. This binary decision-making process is

fundamental in perceptron's.

Learning Rate:

Learning rate dictates the size of steps taken during weight updates. An optimal

learning rate is crucial for efficient convergence and avoiding overshooting.

Momentum Factor:

Momentum enhances gradient descent by incorporating past weight updates.

This factor prevents oscillations and accelerates convergence.

Examples:

Consider a simple neural network with:

 Input Layer: Three features (X1, X2, X3)

 Hidden Layer: Two neurons

 Output Layer: Single output (Y)

Weight Adjustment Formula:

Bias Adjustment Formula:

Where:

 η is the learning rate.

 α is the momentum factor.

 E is the error function.

 It is very well known that the most fundamental unit of deep neural networks is

called an artificial neuron/perceptron. But the very first step towards the perceptron we

use today was taken in 1943 by McCulloch and Pitts, by mimicking the functionality of

a biological neuron.

Biological Neurons: An Overly Simplified Illustration

1.1.6 – Mcculloch Pitts Neuron

Biological Neurons

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

21 Periyar University – CDOE| Self-Learning Material

Dendrite: Receives signals from other neurons

Soma: Processes the information

Axon: Transmits the output of this neuron

Synapse: Point of connection to other neurons

Basically, a neuron takes an input signal (dendrite), processes it like the CPU

(soma), passes the output through a cable like structure to other connected neurons

(axon to synapse to other neuron’s dendrite). Now, this might be biologically

inaccurate as there is a lot more going on out there but on a higher level, this is what

is going on with a neuron in our brain — takes an input, processes it, throws out an

output. Our sense organs interact with the outer world and send the visual and sound

information to the neurons. Let's say you are watching Friends. Now the information

your brain receives is taken in by the “laugh or not” set of neurons that will help you

make a decision on whether to laugh or not. Each neuron gets fired/activated only

when its respective criteria (more on this later) is met like shown below.

It is believed that neurons are arranged in a hierarchical fashion (however,

many credible alternatives with experimental support are proposed by the scientists)

and each layer has its own role and responsibility. To detect a face, the brain could be

relying on the entire network and not on a single layer.

MCCULLOCH-PITTS NEURON

The first computational model of a neuron was proposed by Warren MuCulloch

(neuroscientist) and Walter Pitts (logician) in 1943.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

22 Periyar University – CDOE| Self-Learning Material

It may be divided into 2 parts. The first part, g takes an input (ahem dendrite

ahem), performs an aggregation and based on the aggregated value the second part,

f makes a decision.

Lets suppose that I want to predict my own decision, whether to watch a random

football game or not on TV. The inputs are all boolean i.e., {0,1} and my output variable

is also boolean {0: Will watch it, 1: Won’t watch it}

o So, x_1 could be isPremierLeagueOn (I like Premier League more)

o x_2 could be isItAFriendlyGame (I tend to care less about the friendlies)

o x_3 could be isNotHome (Can’t watch it when I’m running errands. Can I?)

o x_4 could be isManUnitedPlaying (I am a big Man United fan. GGMU!) and

so on.

These inputs can either be excitatory or inhibitory. Inhibitory inputs are those that have

maximum effect on the decision making irrespective of other inputs i.e., if x_3 is 1 (not

home) then my output will always be 0 i.e., the neuron will never fire, so x_3 is an

inhibitory input. Excitatory inputs are NOT the ones that will make the neuron fire on

their own but they might fire it when combined together. Formally, this is what is going

on:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

23 Periyar University – CDOE| Self-Learning Material

Hebb or Hebbian learning rule comes under Artificial Neural Network (ANN)

which is an architecture of a large number of interconnected elements called neurons.

These neurons process the input received to give the desired output. The nodes or

neurons are linked by inputs(x1,x2,x3…xn), connection weights(w1,w2,w3…wn), and

activation functions(a function that defines the output of a node).

Now, coming to the explanation of Hebb network, “ When an axon of cell A is near

enough to excite cell B and repeatedly or permanently takes place in firing it, some

growth process or metabolic changes takes place in one or both the cells such that

A’s efficiency, as one of the cells firing B, is increased.”

In this, if 2 interconnected neurons are ON simultaneously then the weight associated

with these neurons can be increased by the modification made in their synaptic

gaps(strength). The weight update in the Hebb rule is given by;

ith value of w(new) = ith value of w(old) + (ith value of x * y)

1.1.7 – Hebb Network

Biological Neurons

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

24 Periyar University – CDOE| Self-Learning Material

STEP 1:Initialize the weights and bias to ‘0’ i.e w1=0,w2=0, .…, wn=0.

STEP 2: 2–4 have to be performed for each input training vector and target output

pair i.e. s:t (s=training input vector, t=training output vector)

STEP 3: Input units activation are set and in most of the cases is an identity function

(one of the types of an activation function) for the input layer;

ith value of x = ith value of s for i=1 to n

Identity Function: Its a linear function and defined as f(x)=x for all x

STEP 4: Output units activations are set y:t

STEP 5: Weight adjustments and bias adjustments are performed;

ith value of w(new) = ith value of w(old) + (ith value of x * y)

new bias(value) = old bias(value) + y

TRAINING PROCESS

The Hebb rule is more suited for bipolar data than binary data. If binary data is

used, the above weight updation formula cannot distinguish two conditions namely:

1.1.8 – Flowchart of Training Process

Biological Neurons

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

25 Periyar University – CDOE| Self-Learning Material

1. A training pair in which an input unit is “on” and target value is “off ”.

2. A training pair in which both the input unit and the target value are “off ”.

Thus, there are limitations in Hebb rule application over binary data. Hence, the

representation using bipolar data is advantageous. The training algorithm is used for

the calculation and adjustment of weights. The flowchart for the training algorithm of

Hebb network is given in Figure 2-21. Till there exists a pair of training input and target

output, the training process takes place; else, it is stopped.

The training algorithm of Hebb network is given below:

The above five steps complete the algorithmic process. In Step 4, the weight updation formula

can also be given in vector form as

1.1.9 – Training Algorithm

Biological Neurons

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

26 Periyar University – CDOE| Self-Learning Material

Let Us Sum Up

 Soft computing encompasses various computational techniques that mimic

natural and biological processes to solve complex problems. Among these techniques,

Artificial Neural Networks (ANNs) are inspired by the functioning of biological neurons.

Basic models of ANNs involve interconnected nodes, or neurons, that process

information through weighted connections and adjust these weights during learning to

produce desired outcomes. Activation functions determine the neuron's output based

on the input signal, ensuring non-linear decision boundaries. Key terminologies in

ANNs include neurons, weights, biases, and activation functions. The McCulloch-Pitts

neuron model introduced the concept of linear separability, which is essential for

classifying data. The Hebb network, based on Hebbian learning, is one of the earliest

learning algorithms. The training process of ANNs involves iterative weight

adjustments, as illustrated by a flowchart of the training algorithm.

Check Your Progress

1. What is soft computing primarily used for?

A) Precise computations

B) Solving complex problems

C) Enhancing hardware performance

D) Reducing computational time

2. Which of the following is a component of soft computing?

A) Quantum computing

B) Classical algorithms

C) Artificial Neural Networks

D) Binary search

3. Artificial Neural Networks (ANNs) are inspired by which biological structure?

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

27 Periyar University – CDOE| Self-Learning Material

A) DNA

B) Human brain

C) Muscular system

D) Respiratory system

4. In an ANN, what does a neuron represent?

A) A data storage unit

B) A computational unit

C) An input device

D) A type of software

5. What is the basic unit of an artificial neural network called?

A) Synapse

B) Axon

C) Neuron

D) Dendrite

6. What is the main function of an activation function in an ANN?

A) To store data

B) To transform input data

C) To control network speed

D) To determine output signal

7. Which activation function is linear?

A) Sigmoid

B) Tanh

C) ReLU

D) Identity

8. The McCulloch-Pitts neuron model is primarily used for which type of data

classification?

A) Non-linear

B) Linear

C) Statistical

D) Hierarchical

9. What does linear separability refer to in the context of ANNs?

A) Separating input and output layers

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

28 Periyar University – CDOE| Self-Learning Material

B) Separating positive and negative responses with a decision

boundary

C) Separating training and testing data

D) Separating input features

10. Which of the following is NOT an activation function?

A) ReLU

B) Sigmoid

C) Hyperplane

D) Tanh

11. What kind of data is Hebbian learning more suited for?

A) Binary

B) Continuous

C) Bipolar

D) Categorical

12. Which of these describes a bipolar step function?

A) Produces output 0 or 1

B) Produces output -1 or 1

C) Produces output 0 or -1

D) Produces output -0.5 or 0.5

13. What is the primary purpose of a training algorithm in ANNs?

A) To design the network architecture

B) To adjust weights for minimizing errors

C) To select input data

D) To visualize network performance

14. In the context of ANNs, what is meant by 'weights'?

A) The number of neurons

B) The strength of connections between neurons

C) The input data values

D) The output data values

15. Which function is used to update weights in the Hebb network?

A) Weight decay

B) Gradient descent

C) Hebbian learning rule

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

29 Periyar University – CDOE| Self-Learning Material

D) Backpropagation

16. What is the key difference between binary and bipolar data in ANNs?

A) Bipolar data ranges from 0 to 1

B) Binary data ranges from -1 to 1

C) Binary data ranges from 0 to 1 and bipolar data ranges from -1

to 1

D) Bipolar data ranges from -1 to 0

17. What does the term 'net input' refer to in an ANN?

A) Sum of input signals multiplied by their respective weights

B) The input layer signals

C) The output layer signals

D) The bias values

18. What is the primary function of a bias in an ANN?

A) To add randomness to the network

B) To adjust the net input independently of the input values

C) To increase the complexity of the network

D) To decrease the learning rate

19. Which of the following functions is used for a decision boundary in linear

separability?

A) Sigmoid function

B) Step function

C) Ramp function

D) Linear function

20. What does a training pair in supervised learning consist of?

A) Input vector and corresponding target vector

B) Two input vectors

C) Two target vectors

D) Input vector and error vector

21. What type of learning involves a teacher or supervisor?

A) Unsupervised learning

B) Supervised learning

C) Reinforcement learning

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

30 Periyar University – CDOE| Self-Learning Material

D) Self-organized learning

22. In reinforcement learning, what is the feedback called?

A) Error signal

B) Training signal

C) Reinforcement signal

D) Supervisory signal

23. Which learning method organizes input patterns into clusters?

A) Supervised learning

B) Unsupervised learning

C) Reinforcement learning

D) Semi-supervised learning

24. What is the first step in the Hebb network training algorithm?

A) Calculate the output

B) Initialize weights

C) Update weights

D) Compute error

25. What is the purpose of a flowchart in the training process of ANNs?

A) To design the network architecture

B) To visualize the step-by-step training process

C) To debug the network

D) To deploy the network

26. Which activation function is best for binary classification?

A) Sigmoid

B) Tanh

C) ReLU

D) Linear

27. What is the output range of the binary sigmoid function?

A) -1 to 1

B) 0 to 1

C) 0 to infinity

D) -infinity to infinity

28. What does the 'learning rate' in an ANN control?

A) Speed at which the input is processed

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

31 Periyar University – CDOE| Self-Learning Material

B) Size of weight updates during training

C) Number of neurons in the network

D) Activation function applied

29. Which of the following is NOT a type of learning in ANNs?

A) Supervised learning

B) Unsupervised learning

C) Semi-supervised learning

D) Mechanistic learning

30. Which parameter in the sigmoid function controls its steepness?

A) Bias

B) Weight

C) Lambda (λ)

D) Threshold

Unit Summary

 Artificial Neural Networks (ANNs) are computational models inspired by the

brain's biological neurons, designed to solve complex problems through learning and

adaptation. ANNs consist of interconnected neurons, with learning involving weight

adjustments of these connections. Basic models include single-layer and multi-layer

perceptrons, with connections determining signal propagation. Activation functions,

like sigmoid and step functions, introduce non-linearity, essential for solving complex

problems. Key terms include neurons, layers, weights, and biases. The McCulloch and

Pitts neuron model laid the foundation for modern neural networks. Linear separability

determines if data can be split by a line, crucial for understanding perceptron

limitations. The Hebb network, based on Hebb's rule, is suited for bipolar data,

facilitating associative learning. Training involves algorithms like gradient descent and

backpropagation to optimize performance by minimizing errors.

Glossary

1. Artificial Neural Networks (ANNs): Computational models inspired by the

brain's neural networks, designed to recognize patterns and solve complex

problems through learning from data.

2. Biological Neurons: Basic units of the nervous system in the brain, which

transmit information through electrical and chemical signals.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

32 Periyar University – CDOE| Self-Learning Material

3. Basic Models of ANNs: Various structures of neural networks including single-

layer and multi-layer perceptrons, each with different capabilities for learning

and problem-solving.

4. Connections: Links between neurons in a neural network that carry signals

and have associated weights adjusted during learning.

5. Learning: The process by which an ANN adjusts its weights and biases based

on input data to improve its performance on a given task.

6. Activation Functions: Mathematical functions applied to the input of a neuron

to produce an output; common types include sigmoid, tanh, ReLU, and step

functions.

7. Important Terminologies of ANNs: Key concepts such as neurons, layers,

weights, biases, learning rate, epochs, and activation functions.

8. McCulloch and Pitts Neuron: Early computational model of a neuron, which

uses a weighted sum of inputs and a threshold function to determine output.

9. Linear Separability: A property indicating whether a dataset can be separated

into classes by a straight line (or hyperplane in higher dimensions).

10. Hebb Network: A type of neural network that updates its weights based on

Hebb's rule, which states that the connection between two neurons is

strengthened when both are activated simultaneously.

11. Flowchart of Training Process: Visual representation of the steps involved in

training a neural network, including forward propagation, error calculation, and

weight adjustment.

12. Training Algorithm: A method used to train a neural network, such as gradient

descent or backpropagation, to minimize the error between actual and desired

outputs.

13. Weights: Parameters within the network connections that are adjusted during

learning to improve the network's performance.

14. Biases: Additional parameters in a neural network that help shift the activation

function, improving the model's ability to fit the data.

15. Gradient Descent: An optimization algorithm used to minimize the error by

iteratively adjusting the weights in the direction of the steepest decrease in

error.

16. Backpropagation: A training algorithm for ANNs that involves propagating the

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

33 Periyar University – CDOE| Self-Learning Material

error backward through the network to update the weights and minimize the

error.

17. Epochs: The number of times the entire training dataset is passed forward and

backward through the neural network during training.

18. ReLU (Rectified Linear Unit): An activation function that outputs zero for

negative inputs and the input itself for positive inputs, widely used in deep

learning.

19. Sigmoid Function: An activation function that outputs values between 0 and

1, making it suitable for binary classification problems.

20. Tanh Function: An activation function that outputs values between -1 and 1,

often used in hidden layers of neural networks for its zero-centered output.

Self-Assessment Questions

1. How do artificial neural networks (ANNs) simulate biological neurons, and what

are their primary applications?

2. Compare and contrast single-layer and multi-layer neural networks in terms of

their structure and capabilities.

3. Analyze the role of connections in ANNs and explain how weights are adjusted

during the learning process.

4. Evaluate the importance of activation functions in neural networks and compare

different types of activation functions.

5. Assess the significance of key terminologies in ANNs such as neurons, layers,

weights, biases, and learning rate.

6. Compare the McCulloch and Pitts neuron model with modern artificial neurons

in terms of their functionality and complexity.

7. Analyze the concept of linear separability and its implications for classification

tasks in neural networks.

8. Evaluate the Hebb network and explain how Hebb's rule is applied to adjust

weights during learning.

9. Compare different training algorithms used in neural networks, such as gradient

descent and backpropagation, in terms of their efficiency and effectiveness.

10. Assess the importance of epochs in training neural networks and analyze how

the number of epochs impacts model performance.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

34 Periyar University – CDOE| Self-Learning Material

11. Compare and contrast different types of activation functions, such as ReLU,

sigmoid, and tanh, in terms of their characteristics and suitability for different

tasks.

12. Analyze the process of backpropagation and its role in updating weights to

minimize error during training.

13. Compare the advantages and disadvantages of using binary and bipolar data

representations in neural networks.

14. Evaluate the flowchart of the training process and analyze each step's

significance in training a neural network effectively.

15. Assess your overall understanding of soft computing concepts, including neural

networks, and identify areas for further study or improvement.

Activities / Exercises / Case Studies

Activities:

1. Neural Network Simulation: Develop a simple neural network simulation tool

where students can experiment with different network architectures, activation

functions, and learning algorithms. They can observe how changes affect the

network's behavior and performance.

2. Biological Neuron Comparison: Organize a hands-on activity where students

dissect and examine biological neurons under a microscope. They can

compare the structure and function of biological neurons to artificial neural

networks, discussing similarities and differences.

3. Modeling Neural Connections: Divide students into groups and assign each

group a specific type of neural network architecture (e.g., feedforward,

recurrent). Have them create physical models using craft materials to represent

the connections between neurons and demonstrate how information flows

through the network.

Case Study:

1. Predictive Maintenance in Manufacturing: Provide students with a case study

detailing a manufacturing plant's maintenance challenges. Task them with

designing an artificial neural network-based predictive maintenance system to

anticipate equipment failures and schedule maintenance proactively. They can

analyze historical data, develop the model, and assess its effectiveness in

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

35 Periyar University – CDOE| Self-Learning Material

reducing downtime.

2. Healthcare Diagnosis System: Present a case study focused on diagnosing

medical conditions using patient data and artificial neural networks. Students

must build a diagnostic system that predicts diseases based on symptoms and

test results. They can explore different network architectures and fine-tune the

model for accuracy and reliability.

Exercise:

1. Activation Function Analysis: Prepare a set of exercises where students

analyze the behavior of various activation functions (e.g., sigmoid, ReLU, tanh)

using mathematical calculations and graphical representations. They can

compare the functions' characteristics, such as linearity, saturation, and

sensitivity to input changes.

2. Hebbian Learning Simulation: Create a simulation exercise where students

implement the Hebbian learning rule to adjust synaptic weights in a neural

network. They can observe how connections strengthen or weaken based on

correlated activity between neurons, gaining insight into associative learning

principles.

Answers for check your progress

Modules S. No. Answers

Module 1

1. B) Solving complex problems

2. C) Artificial Neural Networks

3. B) Human brain

4. B) A computational unit

5. C) Neuron

6. D) To determine output signal

7. D) Identity

8. B) Linear

9. B) Separating positive and negative responses with a

decision boundary

10. C) Hyperplane

11. C) Bipolar

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

36 Periyar University – CDOE| Self-Learning Material

12. B) Produces output -1 or 1

13. B) To adjust weights for minimizing errors

14. B) The strength of connections between neurons

15. C) Hebbian learning rule

16. C) Binary data ranges from 0 to 1 and bipolar data ranges

from -1 to 1

17. A) Sum of input signals multiplied by their respective

weights

18. B) To adjust the net input independently of the input values

19. D) Linear

20. B) Activation function

21. C) Binary step function

22. D) Activation functions help in achieving non-linearity in the

network

23. D) Binary sigmoid function

24. B) To convert net input into binary output

25. C) Sigmoidal functions

26. D) To convert net input into an output between 0 and 1

27. C) e^(-λx)

28. D) Hyperbolic tangent function

29. A) λ > 0

30. B) Training algorithm

Suggested Readings

1. Karray, F. O., & De Silva, C. W. (2004). Soft computing and intelligent systems

design: theory, tools and applications. Pearson Education.

2. Haykin, S. (2009). Neural networks and learning machines, 3/E. Pearson

Education India.

3. Ian, G. (2016). Deep learning/Ian Goodfellow, Yoshua Bengio and Aaron

Courville.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

37 Periyar University – CDOE| Self-Learning Material

Open-Source E-Content Links

1. GeeksforGeeks - Introduction to Artificial Neural Networks

2. Towards Data Science - Activation Functions

3. Coursera - Neural Networks and Deep Learning

4. DeepAI - Artificial Neural Networks

5. Khan Academy - Neural Networks

6. GeeksforGeeks - Hebb Network

7. Wikipedia - Linear Separability

8. GeeksforGeeks - Activation Functions

9. Towards Data Science - Learning Algorithms

References

1. Aggarwal, C. C. (2018). Neural networks and deep learning (Vol. 10, No. 978,

p. 3). Cham: springer.

2. Priddy, K. L., & Keller, P. E. (2005). Artificial neural networks: an

introduction (Vol. 68). SPIE press.Open-Source E-Content Links

https://www.coursera.org/learn/neural-networks-deep-learning
https://www.khanacademy.org/science/computer-science/algorithms/neural-networks/a/neural-networks
https://en.wikipedia.org/wiki/Linear_separability

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

38 Periyar University – CDOE| Self-Learning Material

Supervised Learning Network

UNIT II – SUPERVISED LEARNING NETWORK

Unit II : SUPERVISED LEARNING NETWORK : Perceptron Networks–

Perceptron Learning Rule – Architecture-Flowchart for Training Process-Perceptron

Training Algorithms for Single Output Classes-Perceptron Training Algorithm for

Multiple Output Classes-Perceptron Network Testing Algorithm - Adaptive Linear

Neuron-Delta Rule for Single Output Unit-Flowchart for training algorithm-Training

Algorithm – Testing Algorithm - Multiple Adaptive Linear Neurons- Architecture-

Flowchart of Training Process-Training Algorithm-Back Propagation Network –

Architecture-Flowchart for Training Process-Training Algorithm-Learning Factors of

Back- Propagation Network-Radial Basis Function Network – Architecture-

Flowchart for Training Process-Training Algorithm.

Section Topic Page No.

UNIT – II

Unit Objectives

Section 2.1 Supervised Learning Network

2.1.1 Perceptron Networks 35

2.1.2 Perceptron Learning Rule 39

2.1.3 Architecture 41

2.1.4 Flowchart for Training Process 42

2.1.5 Perceptron Training Algorithms for Single Output Classes 44

2.1.6
Perceptron Training Algorithms for Multiple Output

Classes
47

2.1.7 Network Testing Algorithm 47

2.1.8 Adaptive Linear Neuron 48

2.1.9 Delta Rule for Single Output Unit 49

2.1.10 Flowchart for training algorithm 53

2.1.11 Training Algorithm 53

2.1.12 Testing Algorithm 53

2.1.13 Multiple Adaptive Linear Neurons 54

2.1.14 Architecture 54

2.1.15 Flowchart of Training Process 55

2.1.16 Training Algorithm 55

2.1.17 Back Propagation Network 58

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

39 Periyar University – CDOE| Self-Learning Material

2.1.18 Architecture 59

2.1.19 Flowchart for Training Process 59

2.1.20 Training Algorithm 62

2.1.21 Learning Factors of Back Propagation Network 65

2.1.22 Radial Basis Neural Function Network 68

2.1.23 Architecture 68

2.1.24 Flowchart of Training Process 69

2.1.25 Training Algorithm 70

2.1.26 Let Us Sum Up 71

2.1.27 Check Your Progress 72

2.2 Unit- Summary 77

2.3 Glossary 78

2.4 Self- Assessment Questions 78

2.5 Activities / Exercises / Case Studies 79

2.6 Answers for Check your Progress 80

2.7 References and Suggested Readings 81

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

35 Periyar University – CDOE| Self-Learning Material

UNIT OBJECTIVE

The objective of this course is to provide a comprehensive understanding of

supervised learning networks, with a particular focus on Perceptron Networks and their

learning rules. Students will explore the architecture and training processes of single

and multiple output class Perceptrons, including the Perceptron Training Algorithms

and testing methods. The course will also cover Adaptive Linear Neurons (Adalines),

emphasizing the Delta Rule and its application in training algorithms. Additionally,

learners will delve into the architecture and training processes of Multiple Adaptive

Linear Neurons (Madalines) and Back Propagation Networks, highlighting the critical

learning factors involved. Finally, the course will introduce Radial Basis Function

Networks, detailing their architecture, training processes, and algorithms. Through

theoretical explanations and practical flowcharts, students will gain a robust foundation

in these fundamental neural network models and their applications in supervised

learning.

The simple perceptron network, as initially conceived, is a foundational model

in the field of artificial neural networks.

 Perceptron is one of the simplest Artificial neural network architectures. It was

introduced by Frank Rosenblatt in 1957s. It is the simplest type of feedforward neural

network, consisting of a single layer of input nodes that are fully connected to a layer

of output nodes. It can learn the linearly separable patterns. it uses slightly different

types of artificial neurons known as threshold logic units (TLU). it was first introduced

by McCulloch and Walter Pitts in the 1940s.

Types of Perceptron

 Single-Layer Perceptron: This type of perceptron is limited to learning linearly

separable patterns. Effective for tasks where the data can be divided into

distinct categories through a straight line.

2.1 SUPERVISED LEARNING NETWORK

2.1.1 – Perceptron Networks

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

36 Periyar University – CDOE| Self-Learning Material

 Multilayer Perceptron: Multilayer Perceptrons possess enhanced processing

capabilities as they consist of two or more layers, adept at handling more

complex patterns and relationships within the data.

Basic Components of Perceptron

 A perceptron, the basic unit of a neural network, comprises essential

components that collaborate in information processing.

 Input Features: The perceptron takes multiple input features, each input

feature represents a characteristic or attribute of the input data.

 Weights: Each input feature is associated with a weight, determining the

significance of each input feature in influencing the perceptron’s output. During

training, these weights are adjusted to learn the optimal values.

 Summation Function: The perceptron calculates the weighted sum of its

inputs using the summation function. The summation function combines the

inputs with their respective weights to produce a weighted sum.

 Activation Function: The weighted sum is then passed through an activation

function. Perceptron uses Heaviside step function functions. which take the

summed values as input and compare with the threshold and provide the output

as 0 or 1.

 Output: The final output of the perceptron, is determined by the activation

function’s result. For example, in binary classification problems, the output

might represent a predicted class (0 or 1).

 Bias: A bias term is often included in the perceptron model. The bias allows the

model to make adjustments that are independent of the input. It is an additional

parameter that is learned during training.

 Learning Algorithm (Weight Update Rule): During training, the perceptron

learns by adjusting its weights and bias based on a learning algorithm. A

common approach is the perceptron learning algorithm, which updates weights

based on the difference between the predicted output and the true output.

These components work together to enable a perceptron to learn and make

predictions. While a single perceptron can perform binary classification, more complex

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

37 Periyar University – CDOE| Self-Learning Material

tasks require the use of multiple perceptrons organized into layers, forming a neural

network. Here's a summary of its key points and characteristics based on your

detailed description:

Perceptron Network Overview

The perceptron network is a type of single-layer feed-forward network, often

referred to as a simple perceptron. The network consists of three main components:

1. Sensory Unit (Input Unit)

2. Associator Unit (Hidden Unit)

3. Response Unit (Output Unit)

Key Points

1. Network Structure:

 The perceptron network consists of three units: sensory (input),

associator (hidden), and response (output) units.

2. Connections and Weights:

 Sensory units are connected to associator units with fixed weights.

These weights have values of 1, 0, or -1, assigned randomly.

3. Activation Functions:

 Both sensory and associator units use a binary activation function.

 The response unit's activation can be 1, 0, or -1. A binary step function

with a fixed threshold 𝑞q is used as the activation function for the

associator unit.

4. Output Calculation:

 The output 𝑦y of the perceptron network is given by

5. Learning Rule:

 The perceptron learning rule is used for weight updates between the

associator unit and the response unit.

 For each training input, the network calculates the response and checks

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

38 Periyar University – CDOE| Self-Learning Material

for errors.

 Error calculation is based on comparing the target values with the

calculated outputs.

 If an error occurs, weights on connections from units that send nonzero

signals are adjusted based on the learning rule:

6. Training Process:

 The learning process begins with an initial guess of the weight values.

 Successive adjustments are made based on evaluating an objective

function.

 The learning rule iterates towards a near-optimal or optimal solution in a

finite number of steps.

 Training stops when no error occurs for a given pattern.

Example Configuration

 A typical sensory unit could be a two-dimensional matrix of photodetectors,

where each photodetector provides a binary output based on the intensity of

the light.

 Associator units consist of feature predicates, which are subcircuits designed

to detect specific features of a pattern. These predicates output binary results.

 The response unit contains the perceptrons that recognize patterns. Weights in

the input layer are fixed, while weights in the response unit are adjustable

through training.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

39 Periyar University – CDOE| Self-Learning Material

The perceptron learning rule is a fundamental algorithm used in training single-

layer perceptron networks. It is based on adjusting the weights of the network in

response to errors between the desired output and the actual output. Here's an in-

depth explanation of the perceptron learning rule:

Components

1. Input Vectors and Targets:

 Consider a finite number N of input training vectors 𝑥(𝑛, with their

associated target (desired) values 𝑡(𝑛), where 𝑛n ranges from 1 to 𝑁.

 The target values 𝑡(𝑛)t(n) are either +1 or -1.

2. Output Calculation:

 The output y is obtained based on the net input 𝑦in, which is the weighted

sum of inputs.

 The activation function 𝑓(𝑦in) applied over the net input 𝑦in determines

the output y.

3. Activation Function:

Weight Update Rule

1. Error Calculation:

 The learning signal is the difference between the desired response t and

the actual response 𝑦.

2. Weight Adjustment:

 If the actual output 𝑦y does not match the target 𝑡t (i.e., 𝑦≠𝑡), the weights

are updated as follows:

 wi is the weight of the i-th input.

 𝛼 is the learning rate.

 t is the target value.

2.1.2 – Perceptron Learning Rule

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

40 Periyar University – CDOE| Self-Learning Material

 𝑥𝑖 is the i-th input value.

 If 𝑦=𝑡, the weights remain unchanged:

3. Initialization:

 The weights can be initialized to any values.

Convergence Theorem

The perceptron rule convergence theorem provides a guarantee for the learning

process under certain conditions:

 Convergence Theorem Statement: "If there exists a weight vector 𝑊W such

that 𝑓(𝑥(𝑛)⋅𝑊)=𝑡(𝑛)f(x(n)⋅W)=t(n) for all 𝑛n, then for any starting vector 𝑤1w1,

the perceptron learning rule will converge to a weight vector that gives the

correct response for all training patterns, provided that the solution exists. This

convergence occurs within a finite number of steps."

 Implications:

 The theorem assures that if a perfect set of weights exists that can

correctly classify all training inputs, the perceptron learning algorithm will

find these weights.

 The learning process will converge to a solution in a finite number of

steps, given the existence of a solution.

Example of Weight Update Process

Suppose we have the following scenario:

 Learning rate 𝛼=0.1

 Initial weights: 𝑤=[0.2,−0.5]

 Input vector: 𝑥=[1,1]

 Target: 𝑡=1

1. Calculate Net Input:

𝑦in=𝑤⋅𝑥=0.2⋅1+(−0.5)⋅1=0.2−0.5=−0.3

2. Determine Output: Since 𝑦in=−0.3<−𝑞 let's assume 𝑞=0:

y=−1

3. Compare Output with Target:

𝑦≠𝑡  ⟹  −1≠1

4. Update Weights:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

41 Periyar University – CDOE| Self-Learning Material

The perceptron learning rule is a simple yet powerful method for training single-

layer neural networks. It adjusts the weights iteratively to minimize errors, ensuring

that the network eventually learns to classify all training patterns correctly, provided a

solution exists. This process highlights the importance of supervised learning and the

foundational principles of neural network training.

The perceptron network architecture is designed for classification tasks, where the

goal is to categorize input patterns into specific classes. The network consists of the

following main components:

1. Input Layer (Sensory Unit):

 Contains 𝑛n input neurons (𝑥1, 𝑥2, ……, xn) and a bias neuron 𝑥0

typically set to 1.

 The input neurons receive the input signals, which are then transmitted

to the output neuron through weighted connections.

2. Output Layer (Response Unit):

 Contains a single output neuron 𝑦y that produces the final classification

result.

3. Weights:

 Weights 𝑤1, 𝑤2….., wn connect the input neurons to the output neuron.

 An additional weight b is associated with the bias neuron.

2.1.3 – Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

42 Periyar University – CDOE| Self-Learning Material

The training process for a perceptron network is iterative and involves adjusting

the weights based on the errors between the actual and desired outputs. The flowchart

for the training process is outlined below:

1. Initialize Weights and Bias:

 Initialize the weights wi and the bias b to small random values or zeros.

 Set the learning rate α (commonly between 0 and 1).

2. Activate Input Units:

 For each training pair (s,t), set the input units 𝑥𝑖=𝑠𝑖.

3. Calculate Net Input:

 Compute the net input 𝑦in

4. Apply Activation Function:

 Determine the output y using the activation function:

5. Adjust Weights and Bias:

2.1.4 – Training Process Flowchart

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

43 Periyar University – CDOE| Self-Learning Material

6. Check for Convergence:

 Repeat the process until there are no changes in the weights, indicating

that the network has learned the training patterns.

The algorithm for training a perceptron network for single output classes is as

follows:

1. Initialize:

 Set the initial weights wi and bias 𝑏 to zero or small random values.

 Set the learning rate α (commonly 1 for simplicity).

2. Repeat Until Convergence:

 For each training pair (𝑠, 𝑡)

The perceptron network architecture is simple yet effective for binary

classification tasks. The training process involves iterative weight adjustment based

on the errors between the actual and desired outputs. The convergence theorem

assures that if a solution exists, the perceptron learning algorithm will find it within a

finite number of steps. This foundational approach to neural network training laid the

groundwork for more complex and powerful neural network models used today.

2.1.4 – Perceptron Training Algorithm

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

44 Periyar University – CDOE| Self-Learning Material

The perceptron training algorithm is a straightforward iterative method for

adjusting the weights of a single-layer perceptron to correctly classify input vectors

into one of two classes. This method is robust to the initial values of weights and the

learning rate, and it operates on either binary or bipolar input vectors with bipolar

targets. Here is the detailed algorithm:

2.1.5 – Perceptron Training Algorithm for Single Output Classes

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

45 Periyar University – CDOE| Self-Learning Material

Steps of the Perceptron Training Algorithm

Step 0: Initialize the Weights and Bias

 Set the initial weights wi and the bias b to small random values or zero.

 Initialize the learning rate 𝛼 (a small positive value, typically 0<𝛼≤1). For

simplicity, 𝛼 is often set to 1.

Step 1: Loop Until Convergence

 Repeat Steps 2-6 until the stopping condition is met (i.e., no weight changes

occur during an entire iteration over the training set).

Step 2: For Each Training Pair (𝑠,𝑡)

 Iterate through each training example where s is the input vector and 𝑡 is the

target output.

Step 3: Activate Input Units

 Assign the input values: 𝑥𝑖=𝑠𝑖 for all input neurons 𝑖.

Step 4: Calculate Net Input

 Compute the net input to the output neuron:

 where 𝑛 is the number of input neurons.

Step 5: Apply Activation Function

 Determine the output 𝑦y using the activation function 𝑓(𝑦in)):

Here, 𝑞 is the threshold value.

Step 6: Adjust Weights and Bias

 Compare the actual output 𝑦y with the target output 𝑡t.

If 𝑦≠𝑡:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

46 Periyar University – CDOE| Self-Learning Material

Step 7: Check Stopping Condition

 The training process continues until there are no changes in the weights during

an entire pass through the training set, indicating convergence.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

47 Periyar University – CDOE| Self-Learning Material

 For multiple output classes, the perceptron training algorithm is as follows:

Thus, the testing algorithm tests the performance of network.

Note: In the case of perceptron network, it can be used for linear separability concept.

Here the separating line may be based on the value of threshold, i.e., the threshold

used in activation function must be a non-negative value.

2.1.6 – Perceptron Training Algorithm for Multiple Output Classes

Architecture of Perceptron Network

2.1.5 – Perceptron Network Testing Algorithm

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

48 Periyar University – CDOE| Self-Learning Material

 The condition for separating the response from region of positive to region of zero is

The condition for separating the response from region of zero to region of negative is

The conditions above are stated for a single-layer perceptron network with two input

neurons and one output neuron and one bias

An Adaptive Linear Neuron (Adaline) is a type of neural network unit

characterized by a linear activation function. Unlike the perceptron, Adaline's input-

output relationship is linear, meaning the output is a continuous value rather than

binary. Adaline networks can be trained using the delta rule, also known as the least

2.1.6 – Adaptive Linear Neuron (ADALINE)

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

49 Periyar University – CDOE| Self-Learning Material

mean square (LMS) rule or the Widrow-Hoff rule. This rule aims to minimize the mean-

squared error between the actual output and the target output.

Key features of Adaline include:

 Linear Activation Function: The activation function is linear, meaning the

output is a linear combination of the inputs.

 Bipolar Inputs and Outputs: Input signals and target outputs are bipolar,

typically taking values of +1 or -1.

 Adjustable Weights: Weights between the input and output units can be

adjusted during training.

 Bias as Adjustable Weight: The bias term acts like an additional weight

connected to a unit with a constant activation of 1.

 Single Output Unit: Adaline typically has only one output unit.

The delta rule, or LMS rule, is used to update the weights in an Adaline network

to minimize the error between the actual and desired outputs. Unlike the perceptron

learning rule, which stops after a finite number of steps, the delta rule is derived from

the gradient descent method and continues to converge asymptotically to the solution.

The weight update rule is designed to minimize the mean-squared error across all

training patterns by reducing the error for each pattern individually. The delta rule for

a single output unit is given by:

Δ𝑤𝑖=𝛼(𝑡−𝑦in) 𝑥i

where:

 Δwi is the change in the weight.

 𝛼 is the learning rate.

 𝑥𝑖 is the input activation.

 𝑦in is the net input to the output unit,

 𝑡 is the target output.

For multiple output units, the weight update rule for the connection from the i-th input

unit to the 𝑗-th output unit is:

2.1.7 – Delta Rule for Single Output Unit

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

50 Periyar University – CDOE| Self-Learning Material

Architecture

The architecture of an Adaline network is shown in Figure 3-5. The Adaline model

consists of several key components:

1. Input Units:

 Inputs are either +1 or -1.

 Each input is connected to the output unit through a weight wi.

2. Bias Unit:

 A constant input unit with an activation value of 1.

 Connected to the output unit through a bias weight 𝑏.

3. Weights:

 Initially assigned random values.

 Adjusted during training to minimize the output error.

4. Net Input Calculation:

 The net input to the output unit is calculated as:

5. Quantizer Transfer Function:

 The continuous net input is passed through a quantizer (or activation

function) to produce the final output.

 The output is restored to +1 or -1.

6. Training Algorithm:

 Compares the actual output with the target output.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

51 Periyar University – CDOE| Self-Learning Material

 Adjusts the weights based on the delta rule to minimize the error.

Adaline Model

The Adaline model operates by adjusting the weights based on the error between the

desired output and the actual output. The steps involved in training an Adaline network

are:

1. Initialize Weights and Bias:

 Set initial weights wi and bias 𝑏 to random small values.

2. Calculate Net Input:

 Compute the net input

3. Apply Activation Function:

 Use a quantizer to determine the final output based on 𝑦in.

4. Compare with Target Output:

 Determine the error by comparing the actual output with the target

output.

5. Adjust Weights and Bias:

 Update weights and bias using the delta rule.

6. Repeat:

 Continue the process until the error is minimized across all training

patterns.

By iteratively adjusting the weights to reduce the mean-squared error, the Adaline

network learns to produce outputs that closely match the target values, achieving

optimal performance for the given training data.

The flowchart for the training process is given below., This gives a pictorial

representation of the network training. The conditions necessary for weight

adjustments have to be checked carefully. The weights and other required parameters

are initialized. Then the net input is calculated, output is obtained and compared with

the desired output for calculation of error. On the basis of the error factor, weights are

adjusted

2.1.8 – Flowchart For Training Process

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

52 Periyar University – CDOE| Self-Learning Material

The Adaline network training algorithm is as follows:

2.1.9 – Training Algorithm

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

53 Periyar University – CDOE| Self-Learning Material

It is essential to perform the testing of a network that has been trained. When training

is completed, the Adaline can be used to classify input patterns. A step function is

used to test the performance of the network. The testing procedure for the Adaline

network is as follows:

The Multiple Adaptive Linear Neurons (Madaline) model extends the Adaline

concept by incorporating multiple Adalines in parallel. Each Adaline operates as an

2.1.9 –Testing Algorithm

Architecture of Perceptron Network

2.1.10 – Multiple Adaptive Linear Neurons (Madaline)

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

54 Periyar University – CDOE| Self-Learning Material

independent linear unit, and their outputs are combined in a subsequent layer, the

Madaline layer, to produce a final output. This structure allows for more complex

decision boundaries and enhances the network's capability to handle non-linearly

separable problems.

Key features of the Madaline model include:

 Parallel Adalines: Multiple Adaline units work in parallel to process the input

signals.

 Output Selection Rules: The final output of the Madaline layer can be

determined using various selection rules, such as:

 Majority Vote Rule: The output is the majority decision of the Adalines

(true or false).

 AND Rule: The output is true only if all Adalines output true.

 OR Rule: The output is true if at least one Adaline outputs true.

 Fixed Weights to Madaline Layer: The weights connecting the Adaline layer

to the Madaline layer are fixed, positive, and equal in value.

 Adjustable Weights: Weights between the input layer and the Adaline layer

are adjustable during the training process.

 Bias of Excitation: Each Adaline and Madaline neuron has a bias unit with a

constant activation of 1.

The training process for a Madaline system is similar to that of an Adaline,

involving weight adjustments to minimize errors.

A simple Madaline architecture consists of three layers: an input layer, an Adaline layer

(hidden layer), and a Madaline (output) layer. The architecture is illustrated in Figure

2.1.11 – Architecture

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

55 Periyar University – CDOE| Self-Learning Material

Components of the Madaline Architecture:

1. Input Layer:

 Contains 𝑛 input units.

 Each input unit provides signals to the Adaline layer.

2. Adaline Layer:

 Consists of 𝑚 Adaline units.

 Serves as the hidden layer between the input and output layers.

 Each Adaline unit receives inputs from all units in the input layer.

 Each Adaline unit has a bias with a constant activation of 1.

3. Madaline Layer (Output Layer):

 Consists of a single output unit.

 The output is determined by applying selection rules to the outputs of the

Adaline units.

 Weights from the Adaline layer to the Madaline layer are fixed, positive,

and equal.

The flowchart of the training process of the Madaline network is shown in Figure

In case of training, the weights between the input layer and the hidden layer are

adjusted, and the weights between the hidden layer and the output layer are fixed.

The time taken for the training process in the Madaline network is very high compared

to that of the Adaline network.

In this training algorithm, only the weights between the hidden layer and the input layer

are adjusted, and the weights for the output units are fixed. The weights v1,v2,…., vm

and the bias b0 that enter into output unit Y are determined so that the

response of unit Y is 1. Thus, the weights entering Y unit may be taken as

and the bias can be taken as

2.1.12 – Flowchart of Training Process

Architecture of Perceptron Network

2.1.13 – Training Algorithm

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

56 Periyar University – CDOE| Self-Learning Material

The activation for the Adaline (hidden) and Madaline (output) units is given by

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

57 Periyar University – CDOE| Self-Learning Material

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

58 Periyar University – CDOE| Self-Learning Material

Madalines can be formed with the weights on the output unit set to perform some logic

functions. If there are only two hidden units present, or if there are more than two

hidden units, then the “majority vote rule’’ function may be used

The back-propagation learning algorithm is a significant development in the

field of neural networks, revitalizing interest in their application to various quantitative

problems. This algorithm is specifically designed for multilayer feed-forward networks

composed of processing elements that utilize continuous, differentiable activation

functions. These networks are commonly referred to as back-propagation networks

(BPNs).

The primary objective of the back-propagation algorithm is to adjust the weights of

the network in such a way that the network can accurately classify the given input

patterns. This is achieved through the gradient-descent method, which is used to

minimize the error between the actual output and the desired target output. The error

is propagated backward through the network, hence the name "back-propagation."

Key points about the back-propagation algorithm include:

 Gradient-Descent Method: The algorithm uses the gradient-descent

approach to update weights, similar to simple perceptron networks with

differentiable units.

 Error Propagation: The error is propagated back to the hidden units,

allowing the network to adjust weights even in hidden layers.

 Training Process: The network aims to balance memorization (responding

accurately to training inputs) and generalization (responding reasonably to

new, similar inputs).

 Weight Update Complexity: Calculating weights for hidden layers efficiently

is challenging, especially as the number of hidden layers increases. The goal

is to minimize or eliminate output error.

 Three Stages of Training:

1. Feed-Forward Phase: Input training patterns are fed forward through

the network.

2. Error Calculation and Back-Propagation: The error is calculated and

propagated back through the network.

2.1.14 – Back-Propagation Learning Algorithm

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

59 Periyar University – CDOE| Self-Learning Material

3. Weight Update: Weights are updated based on the propagated error.

 Testing Phase: Involves only the feed-forward phase to produce outputs

rapidly once the network is trained.

A back-propagation neural network consists of multiple layers:

 Input Layer: Receives the input signals.

 Hidden Layer: Processes inputs received from the input layer. There can be

more than one hidden layer, which enhances the network's capability but

increases the complexity of training.

 Output Layer: Produces the final output.

Neurons in the hidden and output layers have biases, which are essentially weights

connected to units with a constant activation of 1.

The inputs are sent to the BPN and the output obtained from the net could be either

binary (0, 1) or bipolar (–1, +1). The activation function could be any function which

increases monotonically and is also differentiable

The flowchart for the training process using a BPN is shown in Figure 3-10. The

terminologies used in the flowchart and in the training algorithm are as follows:

2.1.15 – Architecture

Architecture of Perceptron Network

2.1.16 – Flowchart for Training Algorithm

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

60 Periyar University – CDOE| Self-Learning Material

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

61 Periyar University – CDOE| Self-Learning Material

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

62 Periyar University – CDOE| Self-Learning Material

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

63 Periyar University – CDOE| Self-Learning Material

2.1.17 – Training Algorithm

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

64 Periyar University – CDOE| Self-Learning Material

Batch-Mode vs Incremental Learning in Back-Propagation Networks

Incremental Learning

The described algorithm uses an incremental approach to update weights. In

this method, weights are adjusted immediately after each training pattern is presented.

This can lead to faster learning initially as the network adapts continuously, but it might

introduce more noise into the weight updates due to the stochastic nature of the

updates after each pattern.

Batch-Mode Learning

In batch-mode learning, weight updates occur only after all training patterns are

presented and the errors for the entire batch are accumulated. This requires additional

local storage to maintain the immediate weight changes for each connection. Batch-

mode learning often leads to smoother convergence as the updates are based on the

averaged error over all training patterns, thus reducing the noise compared to

incremental learning.

Convergence of Back-Propagation Algorithm

The back-propagation algorithm performs a gradient-descent on the error

surface in the weight space. This process aims to minimize the error by moving

towards the nearest minimum error and stopping there. However, convergence to a

proper solution isn't always guaranteed due to the following reasons:

Deterministic vs Stochastic Nature:

In theory, for deterministic relationships between input and output patterns, the

algorithm should converge to the global minimum. However, in practice, the

relationships and the error surfaces are stochastic and not purely deterministic,

leading to random error surfaces.

Local Minima:

The error surface might contain numerous local minima where the algorithm

can get stuck, preventing it from finding the optimal solution. The stochastic nature of

the algorithm, however, can sometimes help the network escape local minima by using

random perturbations to jump out of these traps.

Global Minima and Troughs:

The error function might have multiple global minima due to permutations of

weights that keep the network's input-output function unchanged. This results in the

error surface having multiple troughs, complicating the convergence process.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

65 Periyar University – CDOE| Self-Learning Material

Incremental (On-Line) Training:

 Weight updates occur immediately after each pattern.

 More noise due to frequent updates.

 Potentially faster initial learning.

Batch-Mode Training:

 Weight updates occur after all patterns are presented.

 Smoother convergence due to averaged updates.

 Requires additional storage for accumulated changes.

Practical Considerations

Learning Rate: The choice of learning rate α is crucial. A too-large learning

rate can lead to oscillations and instability, while a too-small rate can result in very

slow convergence.

Stopping Criteria: The algorithm can stop when the weight changes fall below

a threshold, the error reaches an acceptable level, or a maximum number of iterations

is reached.

Regularization: Techniques like regularization can help prevent overfitting,

especially when the network has many parameters compared to the number of

training examples.

The performance and convergence of a Back-Propagation Network (BPN)

depend on several critical learning factors. These include the initial weights, learning

rate, momentum factor, generalization ability, size and nature of the training set, and

the network architecture.

1. Initial Weights

 Importance: The initial weights in a multilayer feed-forward network

significantly affect how quickly the network converges to a solution.

 Initialization Method: Weights are typically initialized to small random values

to avoid saturation of the sigmoidal activation functions. If weights are too large,

neurons might get stuck in a region where the gradient is very small, impeding

learning.

 Range: A common method is to initialize weights 𝑤𝑖𝑗 within the range

2.1.17 – Learning Factors of Back-Propagation Network

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

66 Periyar University – CDOE| Self-Learning Material

where 𝑛𝑖 is the number of input units to neuron 𝑖.

 Nyugen–Widrow Initialization: This method scales the randomly initialized

weights by a factor 𝑔=0.7⋅(𝑛⋅𝑝)1/𝑛 where n is the number of input neurons and

p is the number of hidden neurons.

2. Learning Rate (α)

 Role: The learning rate controls the size of the weight updates during training.

 Effect of Learning Rate:

 A large learning rate can speed up convergence but might cause the

weights to oscillate.

 A small learning rate leads to more stable learning but slows down the

convergence.

 Typical Range: Successful experiments have used learning rates in the range

from 10−3 to 10−1

3. Momentum Factor (η)

 Purpose: Adding a momentum term helps in faster convergence and reduces

the likelihood of the network getting stuck in local minima.

 Formula:

 Effect: The momentum term helps smooth out the weight updates by

considering the past updates, thereby enabling larger learning rates without

causing oscillations.

4. Generalization

 Definition: Generalization refers to the network's ability to respond accurately

to new, unseen inputs.

 Overfitting: A network with too many trainable parameters relative to the

amount of training data can memorize the training set but perform poorly on

new data.

 Prevention: To avoid overfitting, one can monitor the error on a validation set

and stop training when this error begins to increase, a process known as early

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

67 Periyar University – CDOE| Self-Learning Material

stopping.

 Data Augmentation: Introducing variations in the input patterns during training

can improve generalization but is computationally expensive.

5. Number of Training Data

 Sufficiency: The training data should be adequate and representative of the

entire input space.

 Rule of Thumb: The number of training patterns 𝑇 should satisfy 𝑇≫𝐿, where

L is the number of distinct regions in the input space.

 Random Selection: Training vectors should be selected randomly from the

dataset to ensure that the network learns the underlying patterns.

6. Number of Hidden Layer Nodes

 Determination: The number of hidden units is typically determined

experimentally.

 General Guidance:

 Too few hidden units can lead to underfitting, where the network cannot

capture the complexity of the data.

 Too many hidden units can lead to overfitting.

 Fraction of Input Layer: Generally, the number of hidden units is a small

fraction of the number of input units.

Practical Implementation Considerations

 Initialization: Carefully initialize weights to small random values.

 Learning Rate and Momentum: Start with a moderate learning rate and adjust

based on convergence behavior. Incorporate a momentum term to stabilize

learning.

 Generalization Techniques: Use early stopping and data augmentation to

improve generalization.

 Training Data: Ensure the training dataset is sufficiently large and diverse.

 Network Architecture: Experiment with different numbers of hidden layers and

units to find the optimal configuration for your specific problem.

By carefully considering these learning factors and adjusting them appropriately, the

performance and convergence of a Back-Propagation Network can be significantly

improved, resulting in a more robust and generalizable model.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

68 Periyar University – CDOE| Self-Learning Material

Testing Algorithm of Back-Propagation Network

The testing procedure of the BPN is as follows:

The Radial Basis Function (RBF) network, developed by M.J.D. Powell, is a

powerful neural network architecture used for classification and functional

approximation tasks. It utilizes common nonlinearities such as sigmoidal and Gaussian

kernel functions, with Gaussian functions also employed in regularization networks.

The Gaussian function is defined as:

𝑓(𝑦)=𝑒−𝑦2/2

The response of the Gaussian function is positive for all values of 𝑦, with the response

decreasing to 0 as ∣𝑦∣ approaches 0. The derivative of the Gaussian function is:

𝑓′(𝑦)=−𝑦⋅𝑒−𝑦2/2

Graphically, the Gaussian function exhibits a bell-shaped curve.

Characteristics of Gaussian Functions

 Symmetry: Gaussian potential functions are symmetric, producing identical

outputs for inputs within a fixed radial distance from the center of the kernel.

 Localization: Each node responds significantly only when the input falls within

a small localized region of the input space, giving rise to the term "localized

receptive field network."

2.1.18 – Radial Basis Function Network

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

69 Periyar University – CDOE| Self-Learning Material

Architecture

The architecture of the Radial Basis Function Network (RBFN) consists of two layers:

1. Input Layer: Receives the input stimuli.

2. Hidden Layer: Computes kernel (or basis) functions, typically Gaussian

functions, to form a linear combination of nonlinear basis functions.

The output nodes in the hidden layer produce a significant response only when the

input stimulus falls within a small localized region of the input space. This localized

receptive field property allows RBFNs to effectively model complex input-output

mappings.

Application

RBFNs are commonly used for tasks such as classification and functional

approximation. They excel in situations where the input-output relationship is nonlinear

and can effectively model complex patterns in the data.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

70 Periyar University – CDOE| Self-Learning Material

The flowchart for the training process of the RBF is shown in Figure 3-13

below. In this case, the center of the RBF functions has to be chosen and hence,

based on all parameters, the output of network is calculated

 The training algorithm describes in detail all the calculations involved

in the training process depicted in the flowchart. The training is started in the hidden

layer with an unsupervised learning algorithm. The training is continued the output

layer with a supervised learning algorithm. Simultaneously, we can apply supervised

learning algorithm to the hidden and output layers for fine-tuning of the network. The

training algorithm is given as follows.

2.1.18 – Flowchart For Training Process

Architecture of Perceptron Network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

71 Periyar University – CDOE| Self-Learning Material

Let Us Sum Up

In supervised learning networks, various algorithms and architectures are

employed to train and optimize models for specific tasks. Perceptron networks utilize

the perceptron learning rule for single and multiple output classes, with distinct

architectures and training processes. Adaptive Linear Neurons (Adaline) employ the

delta rule for single output units, with training and testing algorithms tailored to their

linear activation functions. Multiple Adaptive Linear Neurons (Madaline) extend

Adaline's capabilities with parallel processing and selection rules.

Back Propagation Networks (BPNs) employ a gradient descent approach,

adjusting weights iteratively to minimize error. Learning factors like initial weights,

learning rate, and momentum factor significantly impact BPN convergence. Radial

Basis Function Networks (RBFNs) utilize Gaussian kernel functions for nonlinear

mappings, with a focus on localized receptive fields. These networks consist of input

and hidden layers, with the latter computing basis functions for a linear combination of

inputs.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

72 Periyar University – CDOE| Self-Learning Material

Check Your Progress

1. What is the primary activation function used in a perceptron network?

A) Sigmoid

B) Linear

C) Step

D) ReLU

2. Which learning rule is associated with the Adaline network?

A) Perceptron learning rule

B) Delta rule

C) Back-propagation

D) Hebbian learning

3. In a perceptron network, what does the learning signal represent?

A) Difference between desired and actual response

B) Net input to the output unit

C) Activation of the hidden layer

D) Weight adjustment factor

4. What is the primary goal of the perceptron network?

A) Regression

B) Classification

C) Clustering

D) Reinforcement learning

5. Which network uses the Widrow-Hoff rule for weight adjustment?

A) Adaline

B) Perceptron

C) Back-propagation network

D) Radial Basis Function network

6. Which factor affects the convergence of a Back Propagation Network (BPN)?

A) Initial weights

B) Learning rate

C) Momentum factor

D) All of the above

7. What is the primary purpose of the hidden layer in a neural network?

A) Directly interact with input data

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

73 Periyar University – CDOE| Self-Learning Material

B) Extract features from input data

C) Produce final output

D) Regularize the network

8. What type of activation function is commonly used in Radial Basis Function

Networks (RBFNs)?

A) Linear

B) Sigmoidal

C) Step

D) Gaussian

9. What is the purpose of the bias unit in a neural network?

A) Regularize the network

B) Introduce nonlinearity

C) Adjust the output threshold

D) Shift the decision boundary

10. Which network is known for its ability to produce localized receptive fields?

A) Adaline

B) Perceptron

C) Madaline

D) RBFN

11. Which learning factor significantly influences the convergence of the Back

Propagation Network (BPN)?

A) Initial weights

B) Number of hidden layers

C) Size of the training set

D) Activation function

12. In the delta rule for Adaline, what does 'Dw' represent?

A) Weight change

B) Learning rate

C) Error correction

D) Target output

13. What is the main purpose of the momentum factor in the back-propagation

learning algorithm?

A) Speed up convergence

B) Regularize the network

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

74 Periyar University – CDOE| Self-Learning Material

C) Prevent overfitting

D) Control learning rate

14. Which network architecture consists of an input layer, hidden layer, and

output layer?

A) Perceptron

B) Radial Basis Function Network

C) Back Propagation Network

D) Multi-layer perceptron

15. What characteristic distinguishes Madaline networks from Adaline networks?

A) Number of layers

B) Activation function

C) Presence of biases

D) Parallel processing capability

16. In the perceptron learning rule, what happens if the calculated output equals

the desired output?

A) Weight adjustment

B) Activation of hidden layer

C) Training termination

D) Gradient descent

17. Which learning factor in the Back Propagation Network (BPN) controls the

rate of weight adjustment?

A) Initial weights

B) Learning rate

C) Momentum factor

D) Number of hidden layers

18. Which algorithm employs the gradient descent method for weight adjustment?

A) Adaline

B) Delta rule

C) Back Propagation Network

D) Perceptron learning rule

19. What is the primary purpose of the hidden layer in a neural network?

A) Regularize the network

B) Extract features from input data

C) Introduce nonlinearity

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

75 Periyar University – CDOE| Self-Learning Material

D) Adjust the output threshold

20. Which network is known for its ability to produce localized receptive fields?

A) Radial Basis Function Network

B) Adaline

C) Perceptron

D) Multi-layer perceptron

21. Which learning factor significantly influences the convergence of the Back

Propagation Network (BPN)?

A) Initial weights

B) Learning rate

C) Size of the training set

D) Activation function

22. In the delta rule for Adaline, what does 'Dw' represent?

A) Error correction

B) Weight change

C) Learning rate

D) Target output

23. What is the main purpose of the momentum factor in the back-propagation

learning algorithm?

A) Speed up convergence

B) Regularize the network

C) Prevent overfitting

D) Control learning rate

24. Which network architecture consists of an input layer, hidden layer, and

output layer?

A) Back Propagation Network

B) Radial Basis Function Network

C) Perceptron

D) Multi-layer perceptron

25. What characteristic distinguishes Madaline networks from Adaline networks?

A) Number of layers

B) Activation function

C) Presence of biases

D) Parallel processing capability

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

76 Periyar University – CDOE| Self-Learning Material

26. In the perceptron learning rule, what happens if the calculated output equals

the desired output?

A) Weight adjustment

B) Activation of hidden layer

C) Training termination

D) Gradient descent

27. Which learning factor in the Back Propagation Network (BPN) controls the

rate of weight adjustment?

A) Learning rate

B) Momentum factor

C) Initial weights

D) Number of hidden layers

28. What is the primary purpose of the sigmoidal activation function in neural

networks?

A) Introduce linearity

B) Regularize the network

C) Introduce nonlinearity

D) Control learning rate

29. Which network architecture is commonly used for functional approximation?

A) Radial Basis Function Network

B) Adaline

C) Perceptron

D) Multi-layer perceptron

30. What distinguishes the Radial Basis Function Network (RBFN) from other

types of networks?

A) Linear activation function

B) Use of Gaussian kernel functions

C) No hidden layers

D) Step function activation

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

77 Periyar University – CDOE| Self-Learning Material

Unit Summary:

Supervised learning networks, including perceptron, Adaline, Madaline, BPNs,

and RBFNs, employ diverse algorithms and architectures for pattern recognition and

classification tasks. These networks adaptively adjust weights to minimize errors, with

learning factors such as initial weights and learning rates significantly influencing

convergence. While perceptron networks are suitable for binary classification, BPNs

excel in complex tasks, with RBFNs offering effective solutions for nonlinear mappings

through Gaussian kernel functions.

Glossary

1. Perceptron: A type of neural network that processes input data to make binary

decisions.

2. Activation Function: A function that determines the output of a neuron based

on its input.

3. Weight: A parameter in a neural network that determines the strength of the

connection between neurons.

4. Learning Rate: A parameter that controls the size of the step taken during the

training of a neural network.

5. Back-Propagation: An algorithm for training multilayer neural networks by

propagating errors backward from the output layer to the input layer.

6. Adaptive Linear Neuron (ADALINE): A type of neural network with linear

activation function whose weights are adjustable.

7. Delta Rule: A learning rule used in ADALINE networks for adjusting weights to

minimize the mean-squared error between the activation and target value.

8. Gradient Descent: An optimization algorithm used to minimize the error

function in neural network training by adjusting weights iteratively.

9. Radial Basis Function Network (RBFN): A type of neural network that uses

radial basis functions in its hidden layer to produce localized responses to input

stimuli.

10. Local Minima: Points in the error surface of a neural network where the error

is at a minimum but may not be the global minimum.

11. Generalization: The ability of a neural network to make accurate predictions

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

78 Periyar University – CDOE| Self-Learning Material

on new, unseen data based on its training experience.

12. Momentum Factor: A parameter used in back-propagation networks to

prevent oscillations during training by adding a fraction of the previous weight

update to the current update.

13. Batch-mode Training: A training approach where weights are updated only

after all training patterns have been presented to the network.

14. Linear Unit: A type of neuron whose activation function produces a linear

output.

15. Multilayer Perceptron (MLP): A type of neural network consisting of multiple

layers of interconnected neurons, commonly used for classification and

regression tasks.

Self-Assessment Questions

1. Evaluate the effectiveness of the Perceptron Learning Rule compared to the

Back-Propagation algorithm in training neural networks.

2. Explain the role of the learning rate parameter in the training process of a neural

network. How does it affect convergence and performance?

3. Compare the architectures of the Adaptive Linear Neuron (ADALINE) and the

Radial Basis Function Network (RBFN). Highlight their differences in structure

and functionality.

4. Detail the steps involved in the Perceptron Training Algorithm for Single Output

Classes. How does it differ from the training algorithm for Multiple Output

Classes?

5. Evaluate the impact of the momentum factor on the convergence and stability

of a Back-Propagation Network. Provide examples to illustrate its significance.

6. Explain the concept of generalization in neural networks. How can overfitting

be mitigated to improve generalization performance?

7. Compare and contrast the learning factors of the Back-Propagation Network

with those of the Radial Basis Function Network. Identify key similarities and

differences.

8. Detail the process of batch-mode training in neural networks. How does it differ

from pattern-by-pattern updating? Evaluate their respective advantages and

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

79 Periyar University – CDOE| Self-Learning Material

disadvantages.

9. Explain how the Delta Rule is used for adjusting the weights of an Adaptive

Linear Neuron. What role does it play in minimizing the mean-squared error

during training?

10. Compare the architectures of single-layer and multilayer perceptrons (MLPs) in

terms of their complexity and computational capabilities. Evaluate their

suitability for different types of tasks.

Activities / Exercises / Case Studies

1. Activity: Implementing Perceptron Learning Rule

 Task: Write Python code to implement the Perceptron Learning Rule

for a binary classification problem.

 Steps:

 Generate synthetic data for two classes with known features.

 Implement the Perceptron algorithm to learn the decision

boundary.

 Visualize the learned decision boundary and plot the data points

with different colors for each class.

 Outcome: Gain hands-on experience with the Perceptron Learning

Rule and understand its behavior in separating linearly separable

classes.

2. Exercise: Tuning Learning Rate in Back-Propagation Network

 Task: Use a simple neural network library or framework (e.g.,

TensorFlow, PyTorch) to train a back-propagation network for a

classification task.

 Steps:

 Set up the neural network architecture with an input layer, one

or more hidden layers, and an output layer.

 Train the network using different learning rates (e.g., 0.1, 0.01,

0.001).

 Evaluate the training and validation accuracy for each learning

rate.

 Plot the learning curves (e.g., loss vs. epochs) to compare the

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

80 Periyar University – CDOE| Self-Learning Material

performance.

 Outcome: Understand the impact of the learning rate on training

convergence and model performance in a back-propagation network.

3. Case Study: Real-world Application of Radial Basis Function Network

 Task: Analyze and implement a radial basis function network for a

regression problem in finance or engineering.

 Steps:

 Choose a dataset related to financial forecasting or engineering

prediction (e.g., stock prices, temperature data).

 Preprocess the dataset and split it into training and testing sets.

 Design and train an RBFN to predict future values based on

historical data.

 Evaluate the model's performance using appropriate metrics

(e.g., RMSE, MAE).

 Outcome: Gain practical experience in applying RBFNs to real-world

problems and understand their strengths and limitations compared to

other regression models.

Answers for check your progress

Module

s

S. No. Answers

Module

1

1. A) Learning signal

2. C) Finite

3. B) Binary vector

4. A) +1 or –1

5. D) Update the weights between the associator unit

and the output unit

6. B) Multilayer feed-forward networks

7. C) Gradient-descent method

8. A) Multilayer, feed-forward neural network

9. D) Calculate the error and update the weights

10. B) Incremental approach

11. A) Adaptive linear neuron

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

81 Periyar University – CDOE| Self-Learning Material

12. D) Least mean square (LMS) rule

13. A) Linear units

14. B) Adjustable weights between the input and the

output

15. C) Delta rule

16. A) Multiple adaptive linear neurons (Madaline)

17. C) Hidden layer

18. B) Sigmoidal and Gaussian kernel functions

19. A) Nonlinearity

20. C) Radial basis function network (RBFN)

21. A) Initial weights

22. A) Learning rate

23. B) Momentum factor

24. C) Learning rate (a)

25. C) Learning factors such as the initial weights,

learning rate, updation rule, etc.

26. C) Initial weights

27. A) Learning rate

28. C) Introduce nonlinearity

29. A) Radial Basis Function Network

30. B) Use of Gaussian kernel functions

Suggested Readings

1. Hertz, J. A. (2018). Introduction to the theory of neural computation. Crc Press.

2. Karray, F. O., & De Silva, C. W. (2004). Soft computing and intelligent systems

design: theory, tools and applications. Pearson Education.

3. Haykin, S. (2009). Neural networks and learning machines, 3/E. Pearson

Education India.

Open-Source E-Content Links

1. GeeksforGeeks - Perceptron Learning Algorithm

2. Towards Data Science - The Perceptron Algorithm

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

82 Periyar University – CDOE| Self-Learning Material

3. Coursera - Neural Networks and Deep Learning

4. GeeksforGeeks - Adaline

5. Towards Data Science - ADALINE and MADALINE

6. Coursera - Machine Learning

7. GeeksforGeeks - Backpropagation

8. Khan Academy - Backpropagation

9. Coursera - Neural Networks and Deep Learning

10. GeeksforGeeks - Radial Basis Function Networks

11. Towards Data Science - RBF Networks

12. Coursera - Deep Learning Specialization

References

1. Ian, G. (2016). Deep learning/Ian Goodfellow, Yoshua Bengio and Aaron

Courville.

2. Murtagh, F., & Farid, M. M. (2001). Pattern Classification, by Richard O. Duda,

Peter E. Hart, and David G. Stork. Journal of Classification, 18(2), 273-275.

https://www.coursera.org/learn/neural-networks-deep-learning
https://www.coursera.org/learn/machine-learning
https://www.khanacademy.org/computing/computer-science/algorithms#neural-networks
https://www.coursera.org/learn/neural-networks-deep-learning
https://www.coursera.org/specializations/deep-learning

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

83 Periyar University – CDOE| Self-Learning Material

Unsupervised Learning Network

UNIT III – UNSUPERVISED LEARNING NETWORK

Unit III: UNSUPERVISED LEARNING NETWORK: Associative Memory

Networks - Auto Associative Memory Network– Architecture-Flowchart for

Training Process-Training Algorithm-Testing Algorithm- Bidirectional Associative

Memory – Architecture-Discrete Bidirectional Associative Memory-Iterative Auto

Associative Memory Networks - Linear Auto Associative Memory-Kohonen Self-

Organizing Feature Map – Architecture-Flowchart for Training Process-Training

Algorithm.

Section Topic Page No.

UNIT – III

Unit Objectives

Section 3.1 Unsupervised Learning Network

3.1.1 Associative Memory Networks 84

3.1.2 Auto Associative Memory Networks 88

3.1.3 Architecture 89

3.1.4 Flowchart for Training Process 90

3.1.5 Training Algorithm 91

3.1.6 Testing Algorithm 91

3.1.7 Bidirectional Associative Memory 94

3.1.8 Architecture 95

3.1.9 Discrete Bidirectional Associative Memory 101

3.1.10 Iterative Auto Associative Memory Networks 107

3.1.11 Linear Auto Associative Memory 107

3.1.12 Kohonen Self Organizing Feature Map 111

3.1.13 Architecture 115

3.1.14 Flowchart for Training Process 116

3.1.15 Training Algorithm 117

 Let Us Sum Up 118

 Check Your Progress 119

3.2 Unit- Summary 124

3.3 Glossary 124

3.4 Self- Assessment Questions 125

3.5 Activities / Exercises / Case Studies 126

3.6 Answers for Check your Progress 128

3.7 References and Suggested Readings 129

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

84 Periyar University – CDOE| Self-Learning Material

UNIT OBJECTIVE

In this course on Unsupervised Learning Networks, students will delve into the

intricacies of Associative Memory Networks, gaining a comprehensive understanding

of their architectures and functionalities. Through a structured curriculum, learners will

explore the training processes, including flowcharts elucidating the intricate steps

involved. They will engage with various algorithms tailored for training and testing

these networks effectively, including Bidirectional Associative Memory and Iterative

Auto Associative Memory Networks. Moreover, the course will equip participants with

the knowledge to implement Discrete Bidirectional Associative Memory systems and

Linear Auto Associative Memory models. Finally, learners will master the Kohonen

Self-Organizing Feature Map, delving into its architecture and training processes

through detailed flowcharts and algorithms. By the end of the course, participants will

possess a robust skill set to tackle real-world problems utilizing these advanced

unsupervised learning technique

An associative memory network can store a set of patterns as memories. When

the associative memory is being presented with a key pattern, it responds by

producing one of the stored patterns, which closely resembles or relates to the key

pattern. Thus, the recall is through association of the key pattern, with the help of

information memorized. These types of memories are also called as Content-

Addressable Memories (CAM). The CAM can also be viewed as associating data to

address, i.e.; for every data in the memory there is a corresponding unique address.

Also, it can be viewed as data correlator. Here input data is correlated with that of the

stored data in the CAM. It should be noted that the stored patterns must be unique,

i.e., different patterns in each location. If the same pattern exists in more than one

location in the CAM, then, even though the correlation is correct, the address is noted

to be ambiguous. Associative memory makes a parallel search within a stored data

3.1 ASSOCIATIVE MEMORY NETWORKS

3.1.1 – Associative Memory Networks

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

85 Periyar University – CDOE| Self-Learning Material

file. The concept behind this search is to Output any one or all stored items Which

match the given search argument.

Associative memory systems are intriguing because they allow for the retrieval

of stored information based on similarity rather than explicit matches.

Autoassociative Memory vs. Heteroassociative Memory:

1. Autoassociative Memory:

 In an autoassociative memory, the system is trained to associate each

input vector with a corresponding output vector, where the output vector

ideally resembles the input vector itself.

 This type of memory is particularly useful for tasks such as pattern

completion or pattern recognition where the input and output are

expected to be similar.

2. Heteroassociative Memory:

 Heteroassociative memory, on the other hand, associates input vectors

with output vectors that may differ from the inputs.

 This is useful for tasks where one needs to associate different types of

patterns with each other.

Hamming Distance (HD):

 The Hamming distance between two vectors is a measure of their dissimilarity.

It calculates the number of positions at which the corresponding symbols are

different.

 For two vectors x and x', HD is the count of positions where 𝑥𝑖≠𝑥𝑖′.

Architecture:

1. Feed-forward:

 In a feed-forward architecture, information moves from input units

directly to output units without feedback loops.

 This architecture is simpler and often used for tasks where the output is

a direct function of the input.

2. Iterative (Recurrent):

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

86 Periyar University – CDOE| Self-Learning Material

 Recurrent neural networks have connections among units forming a

closed-loop structure, allowing feedback from the output back to the

input.

 They are powerful for tasks involving sequential data or when past

outputs influence future predictions.

Training Algorithms:

 The training algorithms for associative memory involve determining the weights

(associations) between input and output vectors.

 Various algorithms like Hebbian learning, Hopfield network learning, or

backpropagation can be used depending on the type of memory and the task

requirements.

Training Algorithms for Pattern Association

There are two algorithms developed for training of pattern association nets.

1. Hebb Rule

2. Outer Products Rule

1. Hebb Rule

The Hebb rule is widely used for finding the weights of an associative memory

neural network. The training vector pairs here are denoted as s:t. The weights are

updated unril there is no weight change.

Hebb Rule Algorithmic

Step 0: Set all the initial weights to zero, i.e.,

Wij = 0 (i = 1 to n, j = 1 to m)

Step 1: For each training target input output vector pairs s:t, perform Steps 2-4.

Step 2: Activate the input layer units to current training input, Xi=Si (for i = 1 to n)

Step 3: Activate the output layer units to current target output,

yj = tj (for j = 1 to m)

Step 4: Start the weight adjustment.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

87 Periyar University – CDOE| Self-Learning Material

𝑤𝑖𝑗(𝑛𝑒𝑤)=𝑤𝑖𝑗(𝑜𝑙𝑑)+𝑥𝑖𝑦𝑗(𝑖=1 𝑡𝑜 𝑛 𝑗=1 𝑡𝑜 𝑚).

The algorithmic steps followed are given below

2. Outer Products Rule

Outer products rule is a method for finding weights of an associative net.

Input=> s = (s1, ... ,si, ... ,sn)

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

88 Periyar University – CDOE| Self-Learning Material

Output=> t= (t1, ... ,tj, ... ,tm)

The outer product of the two vectors is the product of the matrices S = sT and T = t,

i.e., between [n X 1] marrix and [1 x m] matrix. The transpose is to be taken for the

input matrix given.

ST = sTt => [𝑠1..𝑠i..𝑠n]*[𝑡1..𝑡j..𝑡m]

This weight matrix is same as the weight matrix obtained by Hebb rule to store the

pattern association s:t. For storing a set of associations, s(p):t(p), p = 1 to P, wherein,

 s(p) = (s1 (p}, ... , si(p), ... , sn(p))

 t(p) = (t1 (p), · · ·' tj(p), · · · 'tm(p))

the weight matrix W = {wij} can be given as

There two types of associative memories

 Auto Associative Memory

 Hetero Associative memory

An auto-associative memory recovers a previously stored pattern that most closely

relates to the current pattern. It is also known as an auto-associative correlator. In the

auto associative memory network, the training input vector and training output vector

are the same.

Training and Storage of Vectors:

 In an autoassociative neural network, both the training input and the target

output vectors are identical. This means the network learns to associate each

input vector with itself.

 The process of determining the weights (associations) between input and

output vectors is termed as "storing of vectors."

3.1.2 – Auto Associative Memory Networks

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

89 Periyar University – CDOE| Self-Learning Material

Noise Suppression:

 Autoassociative memory networks require suppression of output noise at the

memory output. This means that even when the input is noisy, the network

should still retrieve the stored pattern accurately.

 The ability of the network to reproduce a stored pattern from a noisy input is

crucial for its performance.

Diagonal Weights:

 In autoassociative networks, the weights on the diagonal can be set to zero.

This is essentially creating an autoassociative net with no self-connections.

 Setting weights to zero on the diagonal improves the network's ability to

generalize or increases its biological plausibility.

 This configuration may be more suitable for iterative networks, especially when

using the delta rule for learning.

 The architecture of an autoassociative neural network typically consists of an

input layer with 𝑛 input units and an output layer with n output units.

 The input and output layers are connected through weighted interconnections.

 Input and output vectors are perfectly correlated with each other component by

component.

3.1.3 – Architecture

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

90 Periyar University – CDOE| Self-Learning Material

Algorithm given below,

3.1.4 – Flowchart for Training algorithm

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

91 Periyar University – CDOE| Self-Learning Material

An autoassociative memory neural network can be used to determine whether

the given input vector is a “known” vector or an “unknown” vector. The net is said to

recognize a “known” vector if the net produces a pattern of activation on the output

units which is same as one of the vectors stored in it.

Step 1 − Set the weights obtained during training for Hebb’s rule.

Step 2 − Perform steps 3-5 for each input vector.

Step 3 − Set the activation of the input units equal to that of the input vector.

Step 4 − Calculate the net input to each output unit j = 1 to n;

Step 5 − Apply the following activation function to calculate the output

 The testing procedure of an autoassociative neural net is as follows:

HETERO ASSOCIATIVE MEMORY

In a hetero-associate memory, the training input and the target output vectors

are different. The weights are determined in a way that the network can store a set of

3.1.5 – Testing Algorithm

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

92 Periyar University – CDOE| Self-Learning Material

pattern associations. The association here is a pair of training input target output

vector pairs (s(p), t(p)), with p = 1,2,…p. Each vector s(p) has n components and each

vector t(p) has m components. The determination of weights is done either by using

Hebb rule or delta rule. The net finds an appropriate output vector, which corresponds

to an input vector x, that may be either one of the stored patterns or a new pattern.

The architecture of a heteroassociative net is shown in Figure 4-5. From the

figure, it can be noticed that for a heteroassociative net, the training input and target

output vectors are different. The input layer consists of n number of input units and the

output layer consists of m number of output units. There exist weighted

interconnections between the input and output layers. The input and output layer units

are not correlated with each other. The flowchart of the training process and the

training algorithm are discussed below,

Testing Algorithm

 The testing algorithm used for testing the heteroassociative net with either noisy

input or with known input is as follows

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

93 Periyar University – CDOE| Self-Learning Material

Training Algorithm

Step 1 − Initialize all the weights to zero as wij = 0 i= 1 to n, j= 1 to m

Step 2 − Perform steps 3-4 for each input vector.

Step 3 − Activate each input unit as follows −𝑥𝑖=𝑠𝑖(𝑖=1 𝑡𝑜 𝑛)

Step 4 − Activate each output unit as follows −𝑦𝑗=𝑠𝑗(𝑗=1 𝑡𝑜 𝑚)

Step 5 − Adjust the weights as follows −𝑤𝑖𝑗(𝑛𝑒𝑤)=𝑤𝑖𝑗(𝑜𝑙𝑑)+𝑥𝑖𝑦𝑗

The weight can also be determine form the Hebb Rule or Outer Products Rule learning

Testing Algorithm

Step 1 − Set the weights obtained during training for Hebb’s rule.

Step 2 − Perform steps 3-5 for each input vector.

Step 3 − Set the activation of the input units equal to that of the input vector.

Step 4 − Calculate the net input to each output unit j = 1 to m;

Step 5 − Apply the following activation function to calculate the output

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

94 Periyar University – CDOE| Self-Learning Material

Bidirectional Associative Memory (BAM) is a supervised learning model in

Artificial Neural Network. This is hetero-associative memory, for an input pattern, it

returns another pattern which is potentially of a different size. This phenomenon is

very similar to the human brain. Human memory is necessarily associative. It uses a

chain of mental associations to recover a lost memory like associations of faces with

names, in exam questions with answers, etc. In such memory associations for one

type of object with another, a Recurrent Neural Network (RNN) is needed to receive

a pattern of one set of neurons as an input and generate a related, but different,

output pattern of another set of neurons.

Bidirectional associative memory (BAM), first proposed by Bart Kosko in the

year 1988. The BAM network performs forward and backward associative searches

for stored stimulus responses. The BAM is a recurrent hetero associative pattern-

marching nerwork that encodes binary or bipolar patterns using Hebbian learning rule.

It associates patterns, say from set A to patterns from set B and vice versa is also

performed. BAM neural nets can respond to input from either layers (input layer and

output layer).

The architecture of BAM network is shown in Figure 4-6. It consists of two layers

of neurons which are connected by directed weighted path interconnections. The

network dynamics involve two layers of interaction. The BAM network iterates by

sending the signals back and forth between the two layers until all the neurons reach

equilibrium. The weights associated with the network are bidirectional. Thus, BAM can

respond to the inputs in either layer. Figure 4-6 shows a single layer BAM network

consisting of n units in X layer and m units in Y layer. The layers can be connected in

both directions (bidirectional) with the result the weight matrix sent from the X layer to

the Y layer is W and the weight matrix for signals sent from the Y layer to the X layer

is WT . Thus, the weight matrix is calculated in both directions.

3.1.6 Bidirectional Associative Memory

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

95 Periyar University – CDOE| Self-Learning Material

WHY BAM IS REQUIRED?

The main objective to introduce such a network model is to store hetero-

associative pattern pairs. This is used to retrieve a pattern given a noisy or

incomplete pattern. BAM Architecture: When BAM accepts an input of n-dimensional

vector X from set A then the model recalls m-dimensional vector Y from set B.

Similarly when Y is treated as input, the BAM recalls X.

BIDIRECTIONAL ASSOCIATIVE MEMORY ARCHITECTURE

The architecture of BAM network consists of two layers of neurons which are

connected by directed weighted pare interconnections. The network dynamics involve

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

96 Periyar University – CDOE| Self-Learning Material

two layers of interaction. The BAM network iterates by sending the signals back and

forth between the two layers until all the neurons reach equilibrium. The weights

associated with the network are bidirectional. Thus, BAM can respond to the inputs in

either layer

Figure shows a BAM network consisting of n units in X layer and m units in Y layer.

The layers can be connected in both directions(bidirectional) with the result the weight

matrix sent from the X layer to the Y layer is W and the weight matrix for signals sent

from the Y layer to the X layer is WT. Thus, the Weight matrix is calculated in both

directions.

Determination of Weights

Let the input vectors be denoted by s(p) and target vectors by t(p). p = 1, ... , P. Then

the weight matrix to store a set of input and target vectors, where

s(p) = (s1(p), .. , si(p), ... , sn(p))

t(p) = (t1(p), .. , tj(p), ... , tm(p))

can be determined by Hebb rule training a1gorithm. In case of input vectors being

binary, the weight matrix W = {wij} is given by

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

97 Periyar University – CDOE| Self-Learning Material

When the input vectors are bipolar, the weight matrix W = {wij} can be defined as

The activation function is based on whether the

input target vector pairs used are binary or bipolar

The activation function for the Y-layer

TESTING ALGORITHM FOR DISCRETE BIDIRECTIONAL ASSOCIATIVE

MEMORY

Step 0: Initialize the weights to store p vectors. Also initialize all the activations to zero.

Step 1: Perform Steps 2-6 for each testing input.

Step 2: Ser the activations of X layer to current input pattern, i.e., presenting the input

pattern x to X layer and similarly presenting the input pattern y to Y layer. Even though,

it is bidirectional memory, at one time step, signals can be sent from only one layer.

So, either of the input patterns may be the zero vector

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

98 Periyar University – CDOE| Self-Learning Material

Step 3: Perform Steps 4-6 when the activations are not converged.

Step 4: Update the activations of units in Y layer. Calculate the net input,

Applying ilie activations, we obtain

Send this signal to the X layer.

Step 5: Update the activations of units in X layer. Calculate the net input,

Applying ilie activations, we obtain

Send this signal to the Y layer.

Step 6: Test for convergence of the net. The convergence occurs if the activation

vectors x and y reach equilibrium. If this occurs then stop, Otherwise, continue.

CONTINUOUS BAM (BIDIRECTIONAL ASSOCIATIVE MEMORY)

 A continuous BAM (Bidirectional Associative Memory) is a variation of

the traditional BAM that operates smoothly and continuously in the range of 0 to 1. It

utilizes logistic sigmoid functions as activation functions for all units. Let's break down

the key concepts:

Activation Functions:

 Binary Sigmoidal Function:

 If the logistic sigmoidal function used is binary, the activation function is:

 Bipolar Sigmoidal Function:

 When using a bipolar sigmoidal function, the activation function is

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

99 Periyar University – CDOE| Self-Learning Material

defined as:

 This function maps inputs to the range [−1,1][−1,1], providing smooth

transitions.

Weight Determination:

 If the input vectors are binary, denoted as (𝑠(𝑝),𝑡(𝑝)) for p=1 to P, the weights

are determined using the formula:

 Despite the input vectors being binary, the weight matrix is bipolar.

Net Input Calculation:

 The net input for a unit 𝑗j in layer 𝑌Y can be calculated with a bias included:

 Similarly, the same formulas apply for the units in the 𝑋X layer.

Convergence Behavior:

 If a bipolar sigmoidal function with a high gain is chosen, the continuous BAM

may converge to a state where vectors approach vertices of a cube.

 When the state of the vector approaches this configuration, it behaves similarly

to a discrete BAM.

 Continuous BAMs provide a continuous and smooth transformation of

input vectors, making them suitable for various applications where smooth transitions

are desired. They offer a flexible framework for associative memory tasks while

ensuring convergence and stability through appropriate weight determination and

activation functions.

Analysis of Hamming Distance, Energy Function and Storage Capacity

Hamming Distance:

 The Hamming distance measures the number of mismatched components

between two given bipolar or binary vectors. It's denoted as 𝐻(𝑋,𝑋′).

 For the example vectors 𝑋=[10101]X=[10101] and 𝑋′=[1111001], the Hamming

distance is 5, indicating 5 differing components.

 The average Hamming distance between corresponding vectors is calculated

as 1/𝑛𝐻(𝑋,𝑋′) where 𝑛 is the number of components in each vector.

Energy Function (Lyapunov Function):

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

100 Periyar University – CDOE| Self-Learning Material

 The stability analysis of a BAM relies on the Lyapunov function, which must

always be bounded and decreasing.

 A BAM is considered bidirectionally stable if the state converges to a stable

point.

 The energy function 𝐸(𝑥,𝑦) of a BAM is defined as where W

is the weight matrix and x and y are input and output vectors, respectively.

 The change in energy due to single bit changes in both vectors y and 𝑥 can be

found using derivatives.

Storage Capacity:

 The memory capacity or storage capacity of a BAM is given as min(m,n), where

n is the number of units in the X layer and m is the number of units in the Y

layer.

 A more conservative estimate for capacity is given by min(m,n).

 Hamming distance quantifies the dissimilarity between vectors, the

energy function helps analyze stability, and the storage capacity determines the

maximum number of associations a BAM can store. These concepts are fundamental

for understanding the behavior and limitations of BAMs in associative memory tasks.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

101 Periyar University – CDOE| Self-Learning Material

Discrete Hopfield Network:

 John J. Hopfield's work in 1982 introduced Hopfield networks, which are

based on the asynchronous behavior of biological neurons. These networks have

been instrumental in the development of the first analog VLSI neural chips and have

found applications in associative memory and optimization problems. Let's explore the

key points of discrete Hopfield networks:

Discrete Hopfield Network:

 The discrete Hopfield network is an autoassociative, fully interconnected,

single-layer feedback network.

 It operates in a symmetrically weighted manner.

 It accepts two-valued inputs: binary (0, 1) or bipolar (+1, -1), with the latter being

more analytically convenient.

 The network has symmetrical weights with no self-connections (𝑤𝑖𝑗=𝑤𝑗𝑖; 𝑤𝑖𝑖=0).

Updating Process:

 In a discrete Hopfield network, only one unit updates its activation at a time.

 Each unit continuously receives external signals and signals from other units in

the network.

 The network operates in a sequential updating process, where an input pattern

is applied initially, and the network output initializes accordingly. This process

continues iteratively until no new updated responses are produced, and the

network reaches equilibrium.

Energy Function:

 Asynchronous updating of units allows the existence of an energy function or

Lyapunov function for the network.

 This function ensures that the network converges to a stable set of activations.

Architecture:

 The architecture consists of processing elements with two outputs: one

inverting and the other non-inverting.

 Outputs from each processing element are fed back to the inputs of other

processing elements but not to itself.

 Connections between processing elements are resistive, with connection

3.1.7 – Discrete Hopfield Neurons

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

102 Periyar University – CDOE| Self-Learning Material

strength represented as 𝑤𝑖𝑗wij.

 Excitatory connections use positive outputs, while inhibitory connections use

inverted outputs.

 Connection strength is positive if both units are on and negative if one is on and

the other off.

Discrete Hopfield networks provide a framework for associative memory tasks, utilizing

the principles of biological neurons. Their architecture and updating process allow for

stable convergence to stored patterns, making them valuable tools in various

applications.

Training Algorithm of Discrete Hopfield Net

 There exist several versions of the discrete Hopfield net. It should be

noted that Hopfield’s first description used binary input vectors and only later on bipolar

input vectors used.

 For storing a set of binary patterns s(p), p = 1 to P, s(p) = (s1(p), .. , si(p), ... ,

sn(p)) the weight matrix given as ,

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

103 Periyar University – CDOE| Self-Learning Material

Testing Algorithm of Discrete Hopfield Net

 In the case of testing, the update rule is formed and the initial weights are those

obtained from the training algorithm.

In a discrete Hopfield network, the update process is carried out asynchronously,

meaning that only one neural unit is allowed to update its output at a given time. This

random updating ensures that each unit is updated at the same average rate. Here's

a breakdown of the asynchronous stochastic recursion process:

Asynchronous Stochastic Recursion:

 Each output node unit is updated separately, taking into account the most

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

104 Periyar University – CDOE| Self-Learning Material

recent values that have already been updated.

 Only one neural unit is updated at a time, ensuring asynchronous operation.

 The next update is carried out on a randomly chosen node, utilizing the already

updated output.

 This process ensures that the network converges gradually, with each unit

updating in a random order.

Convergence:

 Analysis of the Lyapunov function, or energy function, for the Hopfield network

demonstrates that asynchronous updation of weights and weights with no self-

connection (zeros on the diagonals of the weight matrix) are crucial for

convergence.

 This convergence ensures that the network reaches stable states

corresponding to stored patterns.

Recognition of Known and Unknown Vectors:

 A Hopfield network with binary input vectors can distinguish between "known"

and "unknown" vectors.

 When presented with a known vector, the network produces a pattern of

activations on its units that matches the stored vector.

 If the input vector is unknown, the activation vectors during iteration converge

to a state that is not one of the stored patterns. This state is termed as a

spurious stable state.

 Discrete Hopfield networks leverage asynchronous stochastic recursion

to update units gradually, ensuring convergence to stable states. This property

enables the network to recognize known input patterns and distinguish them from

unknown ones. The analysis of Lyapunov function provides insights into the

convergence behavior and stability of the network, highlighting the importance of

asynchronous updating and absence of self-connections in the weight matrix.

The energy function, also known as the Lyapunov function, plays a crucial role in

determining the stability properties of a discrete Hopfield network. It's defined as a

function that is bounded and non-increasing with respect to the state of the system.

Here's how the energy function 𝐸𝑓Ef of a discrete Hopfield network is characterized:

Energy Function Characterization:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

105 Periyar University – CDOE| Self-Learning Material

 Definition: The energy function 𝐸𝑓 captures the dynamics of the system and

determines its stability.

 Boundedness: 𝐸𝑓 is bounded, meaning it has finite values over the range of

possible states of the network.

 Non-increasing Property: 𝐸𝑓 is a non-increasing function of the state of the

system. As the network evolves over time, the energy decreases or remains

constant.

 Stability Indicator: If an energy function exists for an iterative neural network

like the discrete Hopfield network, the network will converge to a stable set of

activations.

 Dependence on Activations: The state of the system for a neural network is

represented by the vector of activations of its units. The energy function 𝐸𝑓

depends on these activations.

 Convergence Criterion: The convergence of the network to stable states can

be verified by monitoring the behavior of the energy function. If the energy

function reaches a minimum or plateaus, the network has converged.

An energy function Ef of a discrete Hopfield network is characterized as

 If the network is stable, then the above energy function decreases whenever

the state of any node changes. Assuming that node i has changed its state, i.e., the

output has changed from +1 to −1 or from −1 to +1 , the energy change ∆Ef is then

given by

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

106 Periyar University – CDOE| Self-Learning Material

The analysis of the energy function in a discrete Hopfield network demonstrates that

the network must reach a stable equilibrium state where the energy does not change

further with iteration. This stability is ensured by the boundedness of the energy

function and the nature of the changes in activations. Here's a summary:

Energy Function Analysis:

 Energy Change: A positive change in the activation of a unit results in a

negative change in the energy function (Δ𝐸𝑓<0). This relationship ensures that

the energy cannot increase and must reach a stable state equilibrium.

 Convergence: A Hopfield network always converges to a stable state in a finite

number of node-updating steps, where every stable state corresponds to a local

minimum of the energy function.

 Lyapunov Stability Theorem: The stability of the Hopfield network is proven

using the Lyapunov stability theorem, which states that a positive-definite

(energy) function that decreases with time ensures asymptotic stability.

 Storage Capacity: The storage capacity of a discrete Hopfield network is

approximately 0.15𝑛, where 𝑛 is the number of neurons in the network. This

capacity determines the number of binary patterns that can be stored and

recalled with reasonable accuracy.

The analysis of the energy function and stability properties of a discrete Hopfield

network provides insights into its convergence behavior and storage capacity. By

ensuring that the energy decreases over time and reaches a stable state, the network

can reliably store and recall patterns. Additionally, the storage capacity formula

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

107 Periyar University – CDOE| Self-Learning Material

provides a guideline for designing networks with sufficient memory capabilities for

specific tasks.

There exists a situation where the net does not respond to the input signal

immediately with a stored target pattern but the response may be more like the stored

pattern, which suggests using the first response as input to the net again. The iterative

autoassociative net should be able to recover an original stored vector when presented

with a test vector close to it. These types of networks can also be called as recurrent

autoassociative networks and Hopfield networks.

The Linear Autoassociative Memory (LAM), developed by James Anderson in

1977, is based on the Hebbian learning rule, which strengthens connections between

neuron-like elements when they are activated. Here's an overview of LAM:

Key Concepts:

 Hebbian Learning Rule: Connections between elements are strengthened

every time they are activated.

 Symmetric Matrix with Eigen Vectors: An 𝑚×𝑚 non-singular symmetric

matrix with m mutually orthogonal eigen vectors is used. These eigen vectors

satisfy the property of orthogonality.

 Training with Orthogonal Unit Vectors: A recurrent LAM network is trained

using a set of 𝑃P orthogonal unit vectors 𝑢1,𝑢2,...,𝑢𝑃 Each vector may be

presented a different number of times.

 Weight Matrix Determination: The weight matrix is determined using the Hebb

learning rule, allowing for the repetition of some stored vectors. Each stored

vector is an eigen vector of the weight matrix, with eigenvalues representing

the number of times the vector was presented.

 Response of the Network: When an input vector X is presented, the output

response of the network is XW, where W is the weight matrix. The response is

the stored vector most similar to the input vector, which may take several

iterations to converge.

3.1.8– Iterative Autoassociative Memory Networks

3.1.9– Linear Auto associative Memory

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

108 Periyar University – CDOE| Self-Learning Material

 Linear Combination of Vectors: The response of the network is the linear

combination of its corresponding eigen values. The eigen vector with the largest

value in this linear expansion is most similar to the input vector.

 Conditions of Linearity: The input and output vector pairs should be mutually

orthogonal. If 𝐴𝑝Ap is the input pattern pair for p=1 to 𝑃, then 𝐴𝑝𝑇𝐴𝑞=0 for 𝑝≠𝑞.

Additionally, if all vectors 𝐴𝑝Ap are normalized to unit length, then the output

𝑌𝑗𝑝=𝐴𝑖𝑗.

The Linear Autoassociative Memory (LAM) utilizes linear algebra concepts and the

Hebbian learning rule to store and recall patterns. By training on orthogonal unit

vectors, the network can associate input patterns with stored vectors and recall the

most similar stored vector when presented with an input. However, care must be taken

to ensure that the overall output response of the system does not grow without bound.

The conditions of linearity between input and output vectors ensure accurate recall of

stored patterns.

Brain-in-the-Box Network

An extension to the linear associator is the brain-in-the-box model. This model

was described by Anderson, 1972, as follows: an activity pattern inside the box

receives positive feedback on certain components, which has the effect of forcing it

outward. When its element start to limit (when it hits the wall of the box), it moves to

corner of the box where it remains as such. The box resides in the state-space (each

neuron occupies one axis) of the network and represents the saturation limits for each

state. Each component here is being restricted between –1 and +1. The updation of

activations of the units in brain-in-the-box model is done simultaneously. The brain-in-

the-box model consists of n units, each being connected to every other unit. Also,

there is a trained weight on the self-connection, i.e., the diagonal elements are set to

zero. There also exists a self-connection with weight 1.

Training Algorithm for Brain-in-the-Box Model

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

109 Periyar University – CDOE| Self-Learning Material

Autoassociator with Threshold Unit

 If a threshold unit is set, then a threshold function can be used as the

activation function for an iterative autoassociator net. The testing algorithm of

autoassociator with specified threshold for bipolar vectors and activations with

symmetric weights and no self-connections, i.e., w w ij = ji and wii = 0 is given.

Testing Algorithm

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

110 Periyar University – CDOE| Self-Learning Material

The network performs iteration until the correct vector X matches a stored vector or

the testing input matches a previous vector or the maximum number of iterations

allowed is reached

The self-organizing maps were invented in the 1980s by Teuvo Kohonen, which

are sometimes called the Kohonen maps. Since they have a special property that

efficiently creates spatially organized "inner illustrations" for the input data's several

features, thus it is utilized for reducing the dimensionality. The topological relationship

amid the data points is optimally preserved by the mapping.

Consider Figure 1. given below and try to understand the basic structure of the

self-organizing map network. It has an array that constitutes neurons or cells, which

are set out on a rectangular or hexagonal sheet. Here the cells are denoted as the

single index i, such that the input vector X(t)= [x1(t), x2(t), ..., xn(t)]T ∈ Rn is connected

parallelly to all the cells, through different weight vectors mi(t) = [mil(t), mi2(t) ..., min(t)

∈ Rn that are further adapted as per the input data set all through the self-organizing

learning procedure.

Firstly, we initialize the mi(0)'s with some small random values at the time of procedure

learning, and then we repeatedly present the data, which has to be analyzed as an

3.1.10 – Self Organizing Map

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

111 Periyar University – CDOE| Self-Learning Material

input vector either in the original order or some random order. Each time we present

an input X(t), we come across the best-matching cell c among all the cells, which is

defined as below;

where ||. || represents the Euclidean distance or measurement of some other distance.

We have defined a neighborhood Nc (t) around the cell as a range of lateral interaction,

which has been demonstrated in the above figure. The basic weight-learning or weight

adapting process is ruled by the following equation:

Here, 0 <α(f) < 1 relates to a scalar factor, which is responsible for controlling the

learning rate that must decrease with time so as to get good performance. As a result

of lateral interaction, the network tends out to be spatially "organized" after adequate

self-learning steps as per the input data set's structure. The cells also get tuned to

some particular input vectors or groups of them, where each cell is responsible for

responding only to some specific patterns within the input pattern set. Lastly, the cell

locations of those cells that respond to different inputs incline to be well-organized

according to the topological relations amid the pattern inside the input set. In this way,

it helps in optimal preserving of topological relationships in the original data space on

the neural map, which is why it is known as Self-Organizing Map as it makes the

network quite powerful in certain applications.

Self-organizing Map Analysis

Let us assume if cell i acknowledges the input vector X; then we call cell i or its location

on the map just like an image of the input vector X. Every pattern vector in the input

set has only one image on the neural map, but one cell can be the image of many

vectors. In the case, if a lattice is placed over a plane, and we incorporate it for

representing a neural map, then, in that case, one square corresponds to one neuron

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

112 Periyar University – CDOE| Self-Learning Material

followed by writing a number of the input pattern, whose image is represented by the

cell existing in the corresponding square and we get a map as shown in Figure 2. The

map portrays the distribution of the input patterns images over the neural map, which

is why it is termed as SOM density map or SOM image distribution map.

Every time there occurs groupings or clustering within the original pattern set,

SOM will preserve it and showcase on the SOM density map, which is nothing, but the

consequence of lateral competition. Closer patterns residing in the original space will

"crowd" their images in some place on the map, and since the cells amid two or more

image-crowded places are influenced by both the adjacent clusters, they will incline to

respond to none of them. They will be imitated as some "plateaus" representing the

clusters within the dataset that are separated by some "valleys", which corresponds

to the classification lines on the SOM density map. Consider Figure 2 to have a better

understanding of this phenomenon. The classification lines are drawn by dotted lines

in the figure.

This is the basis on which we do cluster analysis through the self-organizing

map. We analyze the data for "training" the SOM, and then after undergoing "learning",

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

113 Periyar University – CDOE| Self-Learning Material

the clusters are portrayed on the SOM density map.

Following are some of its advantages:

o We are not required to specify the number of clusters before the completion of

the algorithm because the correct number will be directly shown by the result

itself. On the contrary, most of the traditional clustering algorithms necessitate

the user to select the number of clusters he wishes to get in the result, or he

thinks there should be before implementing the algorithms, and as a result of

which different choices may lead to very different results. In cases where we

have some prior knowledge about the data distribution (e.g., the data may be

high-dimensional), we may have an advantage of SOM clustering.

o When there exist no clustering relations inside the original data set, then the

SOM clustering method degenerates gracefully into a general data analysis

method, which in the case of the traditional methods ends up resulting in some

clusters. It will only make unbelievable results. But in the case of the SOM

algorithm, there is no such problem. It will not contain any plateaus and valleys

on the map when there are no obvious clustering relations within the original

space. Hence it avoids unreasonable, arbitrary classifications. Besides, we can

also inspect the relations between the input patterns in relation to the location

of their images on the map.

o It can be noted that in the basic SOM learning procedure, initially, the

neighborhood size is kept quite large, and we let it shrink with time as it makes

cells more specifically tuned to different patterns. In order to achieve a more

accurate result, it requires some fine-tuning procedure. Since our SOMA is a

new application of the SOM network, it has a different purpose than that of the

traditional algorithm, which is why it is believed not to shrink the neighborhood

too much, for the desire of better results of the clusters.

Self Organizing Map (or Kohonen Map or SOM) is a type of Artificial Neural

Network which is also inspired by biological models of neural systems from the

1970s. It follows an unsupervised learning approach and trained its network through

a competitive learning algorithm. SOM is used for clustering and mapping (or

dimensionality reduction) techniques to map multidimensional data onto lower-

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

114 Periyar University – CDOE| Self-Learning Material

dimensional which allows people to reduce complex problems for easy interpretation.

SOM has two layers, one is the Input layer and the other one is the Output layer.

The architecture of the Self Organizing Map with two clusters and n input features of

any sample is given below:

HOW DO SOM WORKS?

Let’s say an input data of size (m, n) where m is the number of training examples

and n is the number of features in each example. First, it initializes the weights of

size (n, C) where C is the number of clusters. Then iterating over the input data, for

each training example, it updates the winning vector (weight vector with the shortest

distance (e.g Euclidean distance) from training example). Weight updation rule is

given by :

wij = wij(old) + alpha(t) * (xi
k - wij(old))

where alpha is a learning rate at time t, j denotes the winning vector, i denotes the

ith feature of training example and k denotes the kth training example from the input

data. After training the SOM network, trained weights are used for clustering new

examples. A new example falls in the cluster of winning vectors

Algorithm

Training:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

115 Periyar University – CDOE| Self-Learning Material

Step 1: Initialize the weights wij random value may be assumed. Initialize the learning

rate α.

Step 2: Calculate squared Euclidean distance.

 D(j) = Σ (wij – xi) ^2 where i=1 to n and j=1 to m

Step 3: Find index J, when D(j) is minimum that will be considered as winning index.

Step 4: For each j within a specific neighborhood of j and for all i, calculate the new

weight.

 wij (new)=wij(old) + α [xi – wij(old)]

Step 5: Update the learning rule by using :

 α(t+1) = 0.5 * t

Step 6: Test the Stopping Condition.

Architecture

Consider a linear array of cluster units The neighborhoods of the units designated by

“o’’ of radii Ni (k1) and Ni (k3) k1 > k2 > k3 where k1 =2 , k2=1 , k3=0

For a rectangular grid, a neighborhood (Ni) of radii k1 , k2 and k3 is shown and for a

hexagonal grid the neighborhood. In all the three cases the unit with “#” symbol is

the winning unit and the other units are indicated by “o’’. In both rectangular and

hexagonal grids, k1 > k2 > k3, where k1 =2 , k2=1 , k3=0

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

116 Periyar University – CDOE| Self-Learning Material

For rectangular grid, each unit has eight nearest neighbors but there are only six

neighbors for each unit in the case of a hexagonal grid. Missing neighborhoods may

just be ignored. A typical architecture of Kohonen self-organizing feature map

(KSOFM).

Flowchart

The flowchart for KSOFM, which indicates the flow of training process. The process is

continued for particular number of epochs or till the learning rate reduces to a very

small rate. The architecture consists of two layers: input layer and output layer

(cluster). There are “n” units in the input layer and “m” units in the output layer.

Basically, here the winner unit is identified by using either dot product or Euclidean

distance method and the weight updation using Kohonen learning rules is performed

over the winning cluster unit.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

117 Periyar University – CDOE| Self-Learning Material

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

118 Periyar University – CDOE| Self-Learning Material

The extension of Kohonen feature map for a multilayer network involves the addition

of an association layer to the output of the self-organizing feature map layer. The

output node is found to associate the desired output values with certain input vectors.

This type of architecture is called as Kohonen self-organizing motor map (KSOMM;

Ritter, 1992) and layer that is added is called a motor map in which the movement

commands are being mapped into two-dimensional locations of excitation. The

architecture of KSOMM. Here, the feature map is a hidden layer and this acts as a

competitive network which classifies the input vectors. The motor map formation is

based on the learning of a control task. The motor map learning may be either

supervised or unsupervised learning and can be performed by delta learning rule or

outstar learning rule. The motor map learning is an extension of Kohonen’s original

learning algorithm.

Let Us Sum Up

This unit explores various associative memory networks and their unsupervised

learning mechanisms. Autoassociative memory networks, trained using Hebbian

learning, store and recall patterns even in the presence of noise. Bidirectional

Associative Memory (BAM) networks store paired patterns and ensure stability

through an energy function. Iterative autoassociative networks like Linear

Autoassociative Memory (LAM) use linear algebra for recalling orthogonal patterns.

The Kohonen Self-Organizing Feature Map is discussed for its ability to spatially

organize input patterns through competitive learning. Each network's architecture,

training, and testing algorithms are covered to highlight their applications in pattern

recognition and memory recall.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

119 Periyar University – CDOE| Self-Learning Material

Check Your Progress

1. What is the primary function of an autoassociative memory network?

A) Classifying input patterns

B) Storing and recalling patterns

C) Predicting future patterns

D) Filtering noise from input signals

2. What learning rule is typically used in autoassociative memory networks?

A) Backpropagation

B) Hebbian learning

C) Reinforcement learning

D) Genetic algorithms

3. In an autoassociative memory network, the training input and target output

vectors are:

A) Different

B) Identical

C) Random

D) Opposite

4. What is the purpose of setting diagonal weights to zero in an autoassociative

network?

A) To enhance convergence speed

B) To improve generalization

C) To prevent self-connections

D) To reduce computational complexity

5. Which component is NOT part of the autoassociative memory network

architecture?

A) Input layer

B) Hidden layer

C) Output layer

D) Weight matrix

6. What distinguishes a BAM from an autoassociative memory network?

A) BAM stores input-output pairs

B) BAM uses backpropagation

C) BAM requires labeled data

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

120 Periyar University – CDOE| Self-Learning Material

D) BAM operates in real-time

7. In a discrete BAM, input and output vectors are typically:

A) Continuous

B) Binary

C) Categorical

D) Multidimensional

8. The BAM architecture includes which type of layers?

A) Single layer

B) Multiple hidden layers

C) Two interacting layers

D) Convolutional layers

9. What is the primary stability condition for BAM networks?

A) Symmetric weight matrix

B) Asynchronous update

C) Gradient descent optimization

D) Constant learning rate

10. Which function is used to ensure convergence in BAM?

A) Loss function

B) Activation function

C) Energy function

D) Utility function

11. Which method is used to update the units in iterative autoassociative memory

networks?

A) Synchronous update

B) Asynchronous update

C) Batch update

D) Sequential update

12. What ensures that an iterative autoassociative memory network reaches

stability?

A) Fixed learning rate

B) Symmetric weight matrix and zero diagonal

C) Large number of iterations

D) High initial weights

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

121 Periyar University – CDOE| Self-Learning Material

13. What happens when an input pattern is applied to a recurrent linear

autoassociative network?

A) It remains unchanged

B) It is transformed into a different pattern

C) It evolves into the most similar stored pattern

D) It gets normalized

14. Which learning rule is typically applied to linear autoassociative memory

networks?

A) Delta rule

B) Hebbian learning

C) Backpropagation

D) Q-learning

15. The weight matrix in linear autoassociative memory is composed of:

A) Random weights

B) Orthogonal eigen vectors

C) Symmetric weights

D) Binary values

16. What type of learning is used in Kohonen Self-Organizing Feature Maps

(SOM)?

A) Supervised learning

B) Unsupervised learning

C) Reinforcement learning

D) Semi-supervised learning

17. The primary goal of a Kohonen SOM is to:

A) Maximize classification accuracy

B) Organize input data spatially

C) Minimize reconstruction error

D) Predict future data points

18. How does a Kohonen SOM organize data?

A) By clustering similar data points

B) By mapping data to a predefined grid

C) By reducing data dimensionality

D) By sorting data sequentially

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

122 Periyar University – CDOE| Self-Learning Material

19. Which method is used to determine the neighborhood function in SOM?

A) Euclidean distance

B) Manhattan distance

C) Cosine similarity

D) Jaccard index

20. During training, the winning neuron in SOM is determined by:

A) Maximum activation

B) Minimum distance to input

C) Random selection

D) Highest weight sum

21. In SOM, what happens to the weights of the winning neuron and its

neighbors?

A) They remain unchanged

B) They move closer to the input vector

C) They move away from the input vector

D) They are randomized

22. Which of the following is NOT a characteristic of SOM?

A) Competitive learning

B) Grid-like topology

C) Supervised labeling

D) Neighborhood function

23. The topology of a Kohonen SOM is usually:

A) Linear

B) Circular

C) Grid-based

D) Hierarchical

24. What is the primary advantage of using SOM?

A) High prediction accuracy

B) Visual representation of data

C) Speed of training

D) Low computational cost

25. Which step comes first in the training process of an autoassociative memory

network?

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

123 Periyar University – CDOE| Self-Learning Material

A) Weight initialization

B) Pattern presentation

C) Weight update

D) Convergence check

26. In the training algorithm for BAM, weights are updated based on:

A) Gradient descent

B) Hebbian learning

C) Backpropagation

D) Reinforcement signals

27. During the testing phase of an autoassociative network, an input vector is:

A) Transformed into a random vector

B) Compared with stored vectors

C) Used to update weights

D) Ignored if not recognized

28. The flowchart for training a SOM typically ends with:

A) Weight adjustment

B) Neighborhood function update

C) Convergence assessment

D) Output generation

29. Which algorithm is primarily used in the training of a Kohonen SOM?

A) Backpropagation

B) K-means clustering

C) Competitive learning

D) Gradient boosting

30. In the testing algorithm for BAM, the recall process involves:

A) Sequentially activating each neuron

B) Presenting noisy inputs

C) Converging to a stable state

D) Randomly initializing weights

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

124 Periyar University – CDOE| Self-Learning Material

Unit Summary

This unit covers the architecture and functioning of various associative memory

networks, focusing on autoassociative memory networks. The architecture of

autoassociative networks involves training where the input and target output vectors

are the same. The training process is guided by Hebbian learning rules to store

patterns and recall them accurately despite noise. Bidirectional Associative Memory

(BAM) networks are introduced, characterized by their ability to store paired patterns

in a recurrent manner, with discrete BAM using binary vectors. Iterative

autoassociative memory networks, including Linear Autoassociative Memory (LAM),

use linear algebra to recall orthogonal patterns effectively. Lastly, the Kohonen Self-

Organizing Feature Map is discussed, emphasizing its unsupervised learning

capability to organize input patterns spatially through competitive learning. Each

network type is detailed with corresponding architectures, training, and testing

algorithms, highlighting their roles in pattern recognition and memory recall.

Glossary

1. Associative Memory Networks : A type of neural network that stores and

recalls patterns based on associations between input and output pairs.

2. Autoassociative Memory Network: A network where the input and output

patterns are the same, used for pattern recognition and recall.

3. Bidirectional Associative Memory (BAM): A network that stores

associations between two sets of patterns, allowing bidirectional recall.

4. Hebbian Learning Rule: A learning rule stating that the connection between

two neurons is strengthened when they are activated simultaneously.

5. Eigen Vector A vector that remains in the same direction after a linear

transformation.

6. Symmetric Weight Matrix : A matrix where the weight from neuron i to neuron

j is equal to the weight from neuron j to neuron i (wij = wji).

7. Energy Function (Lyapunov Function) : A function that decreases with each

update of the network, ensuring convergence to a stable state.

8. Asynchronous Update: A method where only one neuron updates its state at

a time based on the most recent information.

9. Kohonen Self-Organizing Feature Map (SOM): An unsupervised learning

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

125 Periyar University – CDOE| Self-Learning Material

algorithm that maps high-dimensional data onto a low-dimensional grid.

10. Competitive Learning: A learning process where neurons compete to be

activated, leading to specialization of neurons.

11. Neighborhood Function : A function that determines how the weights of

neighboring neurons are adjusted during training in SOM.

12. Storage Capacity: The number of patterns a network can store and recall

accurately.

13. Orthogonality: A property indicating that vectors are perpendicular and have

zero dot product.

14. Spurious Stable State: An incorrect stable state that the network might

converge to, which is not one of the stored patterns.

15. Recurrent Network: A network where connections form cycles, allowing the

network to maintain a state.

Self-Assessment Questions

1. Explain the architecture of an Autoassociative Memory Network.

2. Describe the flowchart for the training process of an Autoassociative Memory

Network.

3. What is the training algorithm for an Autoassociative Memory Network?

4. How is the testing algorithm implemented in an Autoassociative Memory

Network?

5. What is the architecture of a Bidirectional Associative Memory (BAM)?

6. Explain the concept of a Discrete Bidirectional Associative Memory.

7. Describe the iterative process in Iterative Autoassociative Memory Networks.

8. What are the key features of a Linear Autoassociative Memory (LAM)?

9. Discuss the architecture of the Kohonen Self-Organizing Feature Map.

10. Outline the flowchart for the training process of the Kohonen Self-Organizing

Feature Map.

11. What is the training algorithm for the Kohonen Self-Organizing Feature Map?

12. How does the testing algorithm work for the Kohonen Self-Organizing Feature

Map?

13. How do Autoassociative Memory Networks handle noisy inputs?

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

126 Periyar University – CDOE| Self-Learning Material

14. Compare the training algorithms of Autoassociative Memory Networks and

BAM.

15. What is the significance of zero diagonal weights in Hopfield Networks?

16. How is the energy function used to determine the stability of Hopfield Networks?

17. What is the role of asynchronous updation in the stability of Hopfield Networks?

18. How does the storage capacity of a Hopfield Network compare to that of a

BAM?

19. Explain the Hebbian learning rule and its application in associative memory

networks.

20. How does orthogonality affect the performance of a Linear Autoassociative

Memory?

21. What are the steps involved in the training process of a BAM?

22. How is the convergence of a BAM determined?

23. Describe the process of recalling a stored pattern in an Autoassociative

Memory Network.

24. What is a spurious stable state in the context of Hopfield Networks?

25. How is the Lyapunov function used to prove the stability of Hopfield Networks?

26. Compare the applications of discrete and continuous Hopfield Networks.

27. How does the Kohonen Self-Organizing Feature Map learn to organize input

data?

28. What factors influence the storage capacity of associative memory networks?

29. Discuss the advantages of using bipolar inputs in Hopfield Networks.

30. How is the effectiveness of the Hebbian learning rule evaluated in associative

memory networks?

Activities / Exercises / Case Studies

Activities

1. Design an Autoassociative Memory Network: Create a simple

autoassociative memory network using a set of binary patterns. Train the

network and test its ability to recall patterns from noisy inputs.

2. Implement a Bidirectional Associative Memory (BAM): Develop a BAM and

demonstrate how it can store and recall pattern pairs. Use both binary and

bipolar input vectors for your experiments.

3. Explore the Hebbian Learning Rule: Simulate the Hebbian learning rule in a

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

127 Periyar University – CDOE| Self-Learning Material

simple linear autoassociative memory network. Train the network with a set of

orthogonal vectors and analyze the weight matrix.

4. Kohonen Self-Organizing Feature Map: Create a Kohonen Self-Organizing

Feature Map for a set of input data. Visualize how the input patterns are

organized in the feature map over iterations.

Exercises

1. Analyze the Hamming Distance: Given two binary vectors, compute the

Hamming distance between them. Discuss how this distance metric is used in

the context of associative memory networks.

2. Energy Function Calculation: For a given Hopfield network, compute the

energy function for different states. Show how the energy changes with each

iteration and verify the network's convergence to a stable state.

3. Comparison of Memory Capacities: Compare the storage capacities of

Hopfield Networks and BAMs. Discuss the factors that affect their storage

capabilities and practical implications.

4. Pattern Distortion and Recall: Train an autoassociative memory network with

a set of patterns. Introduce varying levels of noise to the input patterns and

analyze the network's ability to correctly recall the original patterns.

Case Studies

1. Case Study on Real-World Application of Hopfield Networks: Research

and present a case study on a real-world application of Hopfield networks, such

as optimization problems, image recognition, or error correction. Discuss how

the network was designed, trained, and its effectiveness in solving the problem.

2. Case Study on Kohonen Self-Organizing Feature Maps: Investigate a real-

world application of Kohonen Self-Organizing Feature Maps in fields like data

clustering, image compression, or speech recognition. Describe the problem,

how the Kohonen map was utilized, and the results achieved.

3. Comparative Analysis of BAM and Hopfield Networks in Associative

Memory Tasks: Conduct a comparative analysis of BAM and Hopfield

networks in associative memory tasks. Use specific examples or datasets to

illustrate the strengths and weaknesses of each approach in terms of

convergence, stability, and accuracy.

4. Energy Function and Stability Analysis in Neural Networks: Analyze the

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

128 Periyar University – CDOE| Self-Learning Material

stability of a neural network using the energy function. Choose a specific neural

network model, such as a Hopfield network, and perform a detailed analysis of

its energy landscape. Discuss the implications of your findings on the network's

performance and stability.

Answers for check your progress

Module

s

S. No. Answers

Module

1

 1. B) Storing and recalling patterns

 2. B) Hebbian learning

3. B) Identical

4. C) To prevent self-connections

5. B) Hidden layer

6. A) BAM stores input-output pairs

7. B) Binary

8. C) Two interacting layers

9. A) Symmetric weight matrix

10. C) Energy function

11. B) Asynchronous update

12. B) Symmetric weight matrix and zero diagonal

13. C) It evolves into the most similar stored pattern

14. B) Hebbian learning

15. C) Symmetric weights

16. B) Unsupervised learning

17. B) Organize input data spatially

18. A) By clustering similar data points

19. A) Euclidean distance

20. B) Minimum distance to input

21. B) They move closer to the input vector

22. C) Supervised labeling

23. C) Grid-based

24. B) Visual representation of data

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

129 Periyar University – CDOE| Self-Learning Material

25. A) Weight initialization

26. B) Hebbian learning

27. B) Compared with stored vectors

28. C) Convergence assessment

29. C) Competitive learning

30. C) Converging to a stable state

Suggested Readings

1. Hassoun, M. H. (1995). Associative neural memories: theory and

implementation.

2. Kohonen, T. (1991). Self-organizing maps: Ophmization approaches. In

Artificial neural networks (pp. 981-990). North-Holland.

3. Murtagh, F., & Farid, M. M. (2001). Pattern Classification, by Richard O. Duda,

Peter E. Hart, and David G. Stork. Journal of Classification, 18(2), 273-275.

Open-Source E-Content Links

1. GeeksforGeeks - Associative Memory

2. Towards Data Science - Associative Memories

3. Coursera - Neural Networks for Machine Learning

4. GeeksforGeeks - Auto Associative Memory

5. GeeksforGeeks - Bidirectional Associative Memory

6. Towards Data Science – BAM

7. GeeksforGeeks - Kohonen Self-Organizing Map

8. Towards Data Science - Kohonen Network

9. Coursera - Neural Networks and Deep Learning

References

1. Ian, G. (2016). Deep learning/Ian Goodfellow, Yoshua Bengio and Aaron

Courville.

https://www.coursera.org/learn/neural-networks
https://www.coursera.org/learn/neural-networks-deep-learning

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

128 Periyar University – CDOE| Self-Learning Material

Introduction To Fuzzy Logic

UNIT IV – DESIGN WITH CLASSES

Unit IV: INTRODUCTION TO FUZZY LOGIC: Classical Sets –Operations on

Classical Sets-Fuzzy sets - Properties of Fuzzy Sets- Fuzzy Relations –Membership

Functions: Fuzzification- Methods of Membership Value Assignments – Lambda-

Cuts for Fuzzy sets and Fuzzy Relations – Defuzzification Methods–Max-

Membership Principle-Centroid Method-Weighted Average Method-Mean Max

Membership-Center of Sums-Center of Largest Area-First of Maxima

Section Topic Page No.

UNIT – IV

Unit Objectives

Section 4.1 Introduction To Fuzzy Logic

4.1.1 Classical Sets 135

4.1.2 Operations on Classical Sets 137

4.1.3 Fuzzy Sets 136

4.1.4 Properties of Fuzzy Sets 142

4.1.5 Fuzzy Relations 142

4.1.6 Membership Functions 145

4.2.1 Fuzzification 147

4.2.2
Methods of Membership Value

Assignments
149

4.2.3 Defuzzification 161

4.2.4
Lambda Cuts For Fuzzy Sets and Fuzzy

Relations
163

4.2.5 Defuzzification Methods 165

4.2.6 Max Membership Principle 165

4.2.7 Centroid Method 166

4.2.8 Weighted Average Method 166

4.2.9 Mean Max Membership 167

4.2.10 Center of Sums 167

4.2.11 Center of Largest Area 168

4.2.12 First of Maxima 168

 Let Us Sum Up 169

 Check Your Progress 169

4.3 Unit- Summary 174

4.1 INTRODUCTION TO FUZZY LOGIC

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

129 Periyar University – CDOE| Self-Learning Material

UNIT OBJECTIVE

This course aims to provide a comprehensive understanding of fuzzy logic,

beginning with the foundational concepts of classical sets and operations, and

distinguishing them from fuzzy sets. Students will explore the properties of fuzzy sets

and fuzzy relations, extending classical set theory to handle uncertainty and

imprecision. The course covers membership functions and the process of fuzzification,

including various methods for assigning membership values. Additionally, students will

learn about defuzzification techniques and their applications, with a focus on lambda-

cuts for fuzzy sets and relations. Different defuzzification methods, such as the max-

membership principle, centroid method, weighted average method, mean max

membership, center of sums, center of largest area, and first of maxima, will be

examined in detail. By the end of the course, students will be able to apply fuzzy logic

principles to real-world scenarios, enhancing decision-making processes in uncertain

and imprecise environments.

In general, the entire real world is complex, and the complexity arises from

uncertainty in the form of ambiguity. To accurately address real-world complex

problems, one must closely examine these uncertainties using specific approaches.

Fuzzy logic has emerged as a powerful tool to handle the ambiguity and uncertainty

inherent in complex problems. Unlike "crisp logic," which deals with precise values,

fuzzy logic is a form of multi-valued logic that deals with reasoning that is approximate

rather than exact.

4.4 Glossary 174

4.5 Self- Assessment Questions 177

4.6 Activities / Exercises / Case Studies 178

4.7 Answers for Check your Progress 180

4.8 References and Suggested Readings 181

4.1.1 – Introduction to Fuzzy Logic

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

130 Periyar University – CDOE| Self-Learning Material

Fuzzy Logic vs. Crisp Logic

 Crisp Logic:

 Deals with binary or Boolean logic (either 0 or 1).

 Suitable for problems with clear, precise solutions.

 Uses classical set theory, where an element is either a member of a set

or not.

 Fuzzy Logic:

 Allows variables to have a truth value ranging between 0 and 1, not

constrained to two truth values.

 Manages degrees of truth through specific functions.

 Uses linguistic variables to handle imprecision and ambiguity.

Origin and Development

Fuzzy logic was introduced in 1965 by Lotfi A. Zadeh, a professor at the

University of California, Berkeley. Dr. Zadeh proposed that as the complexity of a

system increases, it becomes more challenging to make precise statements about its

behavior. This complexity leads to a point where fuzzy logic, which mimics human

reasoning, becomes the most effective approach. According to Zadeh's Principle of

Complexity and Imprecision, “The closer one looks at a real-world problem, the fuzzier

becomes its solution.”

Key Concepts

 Membership Functions:

 These functions define how each point in the input space is mapped to

a degree of membership between 0 and 1.

 For example, in the context of height, the term "short" might have

different meanings for different people, but a membership function can

provide a standardized way to handle this imprecision.

 Linguistic Variables:

 Variables that represent words or sentences from natural language (e.g.,

"tall," "short").

 These variables are crucial in fuzzy logic as they allow the system to

handle imprecise data effectively.

 Fuzzy Sets:

 Unlike classical sets with clear boundaries, fuzzy sets allow partial

membership.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

131 Periyar University – CDOE| Self-Learning Material

 For instance, the set of "tall people" might include individuals to varying

degrees, reflecting the real-world ambiguity of the term "tall."

Applications and Benefits

Fuzzy logic has been applied to many fields, including:

 Control Systems:

 Used in various control applications like climate control, washing

machines, and camera focusing systems.

 Provides a robust method for handling systems where precise models

are hard to obtain.

 Artificial Intelligence:

 Enhances AI by enabling systems to reason and make decisions in ways

that resemble human thinking.

 Allows AI to handle vague and imprecise information more effectively.

Comparison with Probability

While fuzzy logic and probability both deal with uncertainty, they do so in

fundamentally different ways:

 Probability:

 Measures the likelihood of events occurring.

 Deals with randomness and the uncertainty of event occurrences.

 Fuzzy Logic:

 Measures the degree of truth of statements.

 Deals with ambiguity and the gradation of membership in a set.

Challenges and Controversies

Despite its practical applications, fuzzy logic remains controversial among some

statisticians and engineers. Critics prefer Bayesian logic or traditional two-valued logic

for their mathematical rigor and simplicity. The main challenges with fuzzy logic

include:

 Subjectivity:

 Determining membership functions can be subjective and context-

dependent.

 The rules governing fuzzy systems are also subjective and can vary

based on individual interpretations.

 Complexity:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

132 Periyar University – CDOE| Self-Learning Material

 As the number of variables increases, the number of rules required for

the system grows exponentially (known as the curse of dimensionality).

 Managing this complexity requires sophisticated techniques like

decomposition, clustering, and merging.

Fuzzy logic offers a powerful framework for dealing with the ambiguity and

uncertainty of real-world problems. By allowing partial membership and utilizing

linguistic variables, it provides a nuanced approach to modeling complex systems.

While it faces challenges and skepticism from some quarters, fuzzy logic remains a

valuable tool in fields where human-like reasoning and decision-making are essential.

To understand how fuzzy logic deals with the concept of ambiguity, consider the

statement "John is short." In a fuzzy logic system, this statement is given a truth value

of 0.70. This does not mean there is a 70% chance that John is short, as it would in

probability theory. Instead, it means that John's degree of membership in the set of

short people is 0.70. This implies that John is "kind of" short, reflecting a more nuanced

understanding where there is no sharp boundary between "short" and "tall."

Membership Function in Fuzzy Logic

A membership function (μ) in fuzzy logic assigns a degree of membership to

each element in a set, ranging between 0 and 1. For example, the height of a person

can be mapped to a fuzzy set of "tall" people using a membership function:

 Below 150 cm: μ(tall) = 0

 Above 180 cm: μ(tall) = 1

 Between 150 cm and 180 cm: μ(tall) increases linearly from 0 to 1

This can be visualized in a graph (Figure 10-2), where the height is on the x-

axis and the degree of membership is on the y-axis.

Linguistic Variables

Linguistic variables in fuzzy logic, such as "short," "medium," and "tall," handle

imprecision by allowing values to vary between 0 and 1. This flexibility is crucial for

dealing with real-world ambiguity. For example, consider the following membership

functions (Figure 10-3):

 Short: μ(short) decreases from 1 at 150 cm to 0 at 180 cm.

 Medium: μ(medium) peaks around 165 cm.

 Tall: μ(tall) increases from 0 at 150 cm to 1 at 180 cm.

Fuzzy Sets vs. Classical Sets

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

133 Periyar University – CDOE| Self-Learning Material

Classical sets (crisp sets) have precise boundaries—an element either belongs

to the set (membership value 1) or it does not (membership value 0). Fuzzy sets,

however, allow for partial membership. This is particularly useful when dealing with

concepts that are not black-and-white, such as determining whether someone is "tall"

or "short."

For example:

 A height of 150 cm might have a membership value of 1 in the set of "short"

people.

 A height of 180 cm might have a membership value of 1 in the set of "tall"

people.

 A height of 165 cm might have a membership value of 0.5 in both sets.

Practical Application

To practically apply fuzzy logic, consider an example where "Elizabeth is old."

In classical logic, she either is or is not old. In fuzzy logic, Elizabeth's age can be

mapped to a membership function μ(old), which might return a value of 0.7 if she is

somewhat old but not extremely old.

Fuzzy Logic and Decision Making

In decision-making systems, fuzzy logic provides a way to handle imprecise

inputs and make decisions based on degrees of truth. For instance, a temperature

control system might use fuzzy logic to adjust heating based on "slightly cold,"

"moderately cold," or "very cold" rather than relying on precise temperature thresholds.

Fuzzy logic offers a more flexible approach to dealing with real-world

complexities compared to traditional binary logic. By allowing for degrees of

membership and using linguistic variables, it can handle the ambiguity and vagueness

inherent in many real-world problems. This makes it particularly useful in fields such

as control systems, artificial intelligence, and any area where human-like reasoning

and decision-making are beneficial.

Fuzzy Inference Engine and Fuzzy Rule-Base

A key component of fuzzy logic systems is the fuzzy inference engine or fuzzy

rule-base, which is essential for performing approximate reasoning akin to the human

brain, though at a more primitive level. This system uses a set of fuzzy IF–THEN rules

to process inputs and generate outputs.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

134 Periyar University – CDOE| Self-Learning Material

Fuzzy Sets and Fuzzy Rules

Fuzzy sets are fundamental to fuzzy logic, enabling the representation of

classes with intermediate grades of membership rather than fully disjoint sets. For

instance, the class of "bald men" or "numbers much greater than 50" can be

represented with varying degrees of membership, accommodating the inherent

fuzziness in such categories.

Fuzzy IF–THEN rules form the core of fuzzy systems and have a general structure:

 IF X is A THEN Y is B, where A and B are fuzzy sets.

The IF part (antecedent) represents a condition, and the THEN part (consequent)

describes the outcome. These rules facilitate capturing imprecise knowledge and

enable reasoning even when conditions are only partially satisfied.

Fuzzy Inference Process

The fuzzy inference engine uses these rules to map fuzzy input sets to fuzzy output

sets, relying on fuzzy logic principles. This process involves several steps:

1. Fuzzification: Converting crisp input values into fuzzy values using

membership functions.

2. Rule Evaluation: Applying fuzzy IF–THEN rules to the fuzzified inputs to

generate fuzzy outputs.

3. Aggregation of Outputs: Combining the fuzzy outputs from all rules.

4. Defuzzification: Converting the aggregated fuzzy output back into a crisp

value.

Example Configuration

In a fuzzy system, the inputs and outputs can be numbers or vectors of

numbers. The system operates as a set of rules that convert inputs to outputs,

functioning as nonlinear mappings. These mappings can theoretically model any

system with arbitrary accuracy, acting as universal approximators.

Figure 10-5 illustrates a basic configuration of a pure fuzzy system, where the fuzzy inference

engine transforms fuzzy sets in the input space (X) to fuzzy sets in the output space (Y).

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

135 Periyar University – CDOE| Self-Learning Material

Challenges and Solutions

A significant challenge in fuzzy systems is the curse of dimensionality. As the

number of system variables increases, the number of required rules increases

exponentially, making the system complex and less efficient. To address this issue,

various methods such as decomposition, cluster merging, and fusing have been

proposed, which help manage and reduce the rule set's complexity.

Fuzzy Logic vs. Probability Models

It's important to note that fuzzy models are not replacements for probability

models. Both have their strengths and weaknesses and can be more effective

depending on the problem. Fuzzy logic often provides better solutions for problems

characterized by ambiguity and vagueness, while probability models handle

randomness and uncertainty in the occurrence of events.

Fuzzy logic systems, with their ability to handle imprecision and model complex

systems, remain a powerful tool in various fields. By mimicking human reasoning

through fuzzy IF–THEN rules and dealing with ambiguity quantitatively, they offer

practical solutions to real-world problems where traditional binary logic falls short.

A set is defined as a collection of objects sharing certain characteristics. In

classical (or crisp) set theory, a set contains distinct objects, and each object is either

a member or not a member of the set. This binary distinction contrasts with fuzzy sets,

where partial membership is possible.

Definitions and Notations

1. Universe of Discourse (U): The complete set of all possible elements under

consideration.

2. Cardinal Number (nU): The total number of elements in the universe U.

3. Set (A): A collection of elements from the universe U.

4. Subset (B): A set where all elements are also in another set (A), denoted as

𝐵⊆𝐴.

Characteristics of Classical Sets

 Membership: An object x either belongs to set A (𝑥∈𝐴) or does not belong to

set A (𝑥∉A).

4.1.2 – Classical Sets

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

136 Periyar University – CDOE| Self-Learning Material

 Characteristic Function: Defines membership in a set.

Ways to Define a Set

1. Listing Elements:

𝐴={2,4,6,8,10}

2. Describing Properties:

𝐴={𝑥∣𝑥 is a prime number less than 20}

3. Using a Formula:

𝐴= {𝑥𝑖=𝑖2+1∣𝑖=1, 2,…,5}

4. Logical Operation:

𝐴={𝑥∣𝑥 is an element of 𝑃 and 𝑄}

5. Membership Function:

Special Sets

 Empty Set (∅∅): Contains no elements. Represents an impossible event.

 Whole Set: Contains all elements in the universe U. Represents a certain

event.

 Power Set (P(A)): The set of all subsets of a given set A.

𝑃(𝐴)={𝐵∣𝐵⊆𝐴}

Set Operations and Relations

For sets A and B in universe X:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

137 Periyar University – CDOE| Self-Learning Material

 Classical sets are a fundamental concept in mathematics and form the

basis for various mathematical operations and theories, including probability, algebra,

and calculus. They provide a clear and precise way to group and analyze objects

based on defined properties and relationships.

Classical sets can be manipulated through various operations such as union,

intersection, complement, and difference. These operations are fundamental to set

theory and are defined as follows:

1. Union

The union of two sets A and B includes all elements that belong to either set A

or set B or both. It is analogous to the logical OR operation. The union is denoted by

𝐴∪𝐵 and is defined as:

2. Intersection

The intersection of two sets A and B includes all elements that belong to both

4.1.3 – Operations on Classical Sets

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

138 Periyar University – CDOE| Self-Learning Material

sets A and B simultaneously. It is analogous to the logical AND operation. The

intersection is denoted by A∩B and is defined as:

3. Complement

The complement of a set A consists of all elements in the universe X that do

not belong to A. It is denoted by A′ or 𝐴‾ and is defined as:

4.Difference (Subtraction)

The difference of set 𝐴 with respect to set 𝐵 consists of all elements that belong

to 𝐴 but do not belong to B. It is denoted by A−B or 𝐴∖𝐵 and is defined as:

Venn Diagram:

Conversely:

Properties of Classical Sets

Classical sets share several important properties that mirror the behavior of fuzzy

sets. Some key properties include:

Function Mapping of Classical Sets

In classical sets, a characteristic function 𝜒𝐴(𝑥) represents the set. For any element x

in the universe X:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

139 Periyar University – CDOE| Self-Learning Material

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

140 Periyar University – CDOE| Self-Learning Material

 Fuzzy sets extend and generalize classical set concepts by allowing partial

membership, enabling a more flexible representation of data. Unlike classical sets

where membership is binary (an element either belongs to the set or does not), fuzzy

sets assign degrees of membership, which range from 0 to 1. This allows for a gradual

transition between full membership and non-membership, accommodating the

inherent vagueness present in many real-world situations.

Operations on Fuzzy Sets

The operations on fuzzy sets generalize classical set operations and are

widely used in engineering and other applications. Let A~ and B~ be fuzzy sets in

the universe of discourse U.

41.4 – Fuzzy Sets Perceptron Networks

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

141 Periyar University – CDOE| Self-Learning Material

Fuzzy sets follow several properties similar to classical sets but do not adhere

to the law of excluded middle and the law of contradiction.

4.1.5 – Properties of Fuzzy Sets

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

142 Periyar University – CDOE| Self-Learning Material

Fuzzy relations extend the concept of fuzzy sets to associations between

elements of different universes of discourse through Cartesian products. This allows

relationships between elements to be expressed with degrees of membership,

capturing the partial and uncertain nature of these associations.

Definition of Fuzzy Relations

Fuzzy relations extend the concept of fuzzy sets to associations between

elements of different universes of discourse through Cartesian products. This allows

relationships between elements to be expressed with degrees of membership,

capturing the partial and uncertain nature of these associations.

Binary Fuzzy Relations

A binary fuzzy relation between two sets X and Y is denoted by R(X,Y). This

relation can be visualized and represented in different ways depending on whether X

and Y are the same set or different sets.

4.1.6 – Fuzzy Relations

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

143 Periyar University – CDOE| Self-Learning Material

 Bipartite Graph: When 𝑋≠𝑌, the relation R(X,Y) is referred to as a bipartite

graph. In a bipartite graph, nodes representing elements of X and Y are

distinctly separated, and edges (or links) exist only between nodes from

different sets X and Y.

 Directed Graph (Digraph): When X=Y, the relation R(X, X) (or 𝑅(𝑋2)R(X2)) is

represented as a directed graph or digraph. In this case, nodes representing

elements of X may have directed edges that connect them to other nodes within

the same set X, including possibly to themselves.

Matrix Representation

A fuzzy relation 𝑅(R(X,Y) can be expressed as an n×m matrix, where n=∣X∣ and

𝑚=∣𝑌∣. Each element in the matrix represents the degree of membership of the

corresponding pair (𝑥𝑖,𝑦𝑗)) in the relation R. Let 𝑋={𝑥1,𝑥2,…,𝑥𝑛} and 𝑌={𝑦1,𝑦2,…,𝑦𝑚},

Y={y1,y2,…,ym}. The fuzzy relation R(X,Y) can be represented by the matrix:

A fuzzy relation between two sets X and Y is called binary fuzzy relation and is denoted

by R(X, Y). A binary relation R(X, Y) is referred to as bipartite graph when X ≠ Y. The binary

relation on a single set X is called directed graph or digraph. This relation occurs when X = Y

and is denoted as R(X, X) or R(X2).

The domain of a binary fuzzy relation R(X,Y) is the fuzzy set dom 𝑅(𝑋,𝑌), which has a

membership function defined as:

for all x∈X. This membership function represents the maximum membership value of

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

144 Periyar University – CDOE| Self-Learning Material

the pairs (𝑥,𝑦) in the fuzzy relation R for a fixed 𝑥 and varying 𝑦.

Explanation:

1. Fuzzy Relation R(X,Y):

 A fuzzy relation 𝑅R is a mapping from the Cartesian product 𝑋×𝑌 to the

interval [0,1].

 The mapping strength is expressed by the membership function μR(x,y)

for each pair (𝑥,𝑦).

2. Fuzzy Graph:

 A fuzzy graph is a graphical representation of a binary fuzzy relation.

 Nodes correspond to elements in the sets 𝑋 and Y.

 Links between nodes represent pairs with non-zero membership grades

in R(X,Y).

3. Types of Fuzzy Graphs:

 Bipartite Graph: When 𝑋≠𝑌, the graph is undirected and bipartite, with

nodes from X and Y clearly differentiated.

 Directed Graph: When 𝑋=𝑌, the graph is directed, and nodes from X

can have loops connecting them to themselves.

4. Domain of the Fuzzy Relation R(X,Y):

 The domain is the fuzzy set domR(X,Y).

 The membership function of this domain set 𝜇dom 𝑅(𝑥) is given by the

maximum membership value of 𝜇𝑅(𝑥,𝑦) for all y∈Y.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

145 Periyar University – CDOE| Self-Learning Material

Membership functions are fundamental in representing fuzzy sets and

quantifying the fuzziness in various elements. They provide a way to express the

degree to which an element belongs to a fuzzy set, with values ranging from 0 to 1.

4.1.7 – Membership Functions

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

146 Periyar University – CDOE| Self-Learning Material

Here's a detailed look into the concept of membership functions, their graphical

representation, and methods of construction:

Characteristics of Membership Functions

1. Definition and Purpose:

 The membership function 𝜇𝐴(𝑥)μA(x) for a fuzzy set 𝐴A maps each

element 𝑥x in the universe of discourse to a value between 0 and 1.

 This value represents the degree of membership or the degree to which

𝑥x belongs to the fuzzy set 𝐴A.

2. Graphical Representation:

 Membership functions are often depicted graphically for better

understanding and visualization.

 Common shapes include triangular, trapezoidal, Gaussian, and bell-

shaped curves.

 These shapes provide a simple way to model the uncertainty and

fuzziness associated with different elements.

3. Standard Shapes:

 Despite the inherent fuzziness, certain standard shapes of membership

functions have been widely adopted due to their simplicity and

effectiveness.

 These standard shapes include:

 Triangular Membership Function: Defined by a triangular

shape with a peak at a specific value.

 Trapezoidal Membership Function: Similar to the triangular but

with a flat top, indicating a range of values with full membership.

 Gaussian Membership Function: Characterized by a bell-

shaped curve, commonly used due to its smoothness.

 Bell-shaped Membership Function: A generalized form of the

Gaussian, offering more flexibility.

4. Construction of Membership Functions:

 Membership functions are typically determined through expert opinion,

leveraging their experience and intuition about the problem domain.

 Empirical data, such as histograms and probability distributions, can also

aid in constructing membership functions.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

147 Periyar University – CDOE| Self-Learning Material

 Several methodologies can be employed to build membership functions:

 Expert Knowledge: Using insights and subjective judgment of

domain experts to define the membership function.

 Data-driven Methods: Analyzing available data and statistical

information to shape the membership function.

 Hybrid Approaches: Combining expert knowledge with empirical

data to construct more accurate and reliable membership

functions.

5. Fuzziness in Membership Functions:

 The process of defining membership functions inherently involves some

level of fuzziness, as it relies on subjective judgment and empirical data

interpretation.

 Despite this fuzziness, maintaining standard shapes and systematic

construction methods helps in achieving consistency and reliability.

Membership functions play a crucial role in the field of fuzzy logic by quantifying

the fuzziness and providing a graphical representation of fuzzy sets. While the process

of constructing these functions involves a blend of expert opinion and empirical data,

the use of standard shapes and established methodologies ensures that they

effectively represent the underlying uncertainty. By leveraging both experience and

data, membership functions can be tailored to address specific practical problems,

making them a valuable tool in various applications of fuzzy logic.

Fuzzification is a fundamental process in fuzzy logic systems that converts crisp

input values into fuzzy quantities. This process is crucial for handling real-world

scenarios where data is often imprecise, uncertain, or vague. Here’s a detailed

explanation of fuzzification, including its methods and significance:

Fuzzification Process

1. Definition:

 Fuzzification transforms precise, crisp values into fuzzy sets or fuzzier

sets, facilitating the use of linguistic variables.

 This process enables the translation of exact input values into more

4.1.8 – Fuzzification

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

148 Periyar University – CDOE| Self-Learning Material

descriptive terms, which are then used for decision-making in fuzzy logic

systems.

2. Rationale:

 Real-world quantities are rarely perfectly crisp and often contain inherent

uncertainty.

 This uncertainty can stem from various sources, such as measurement

imprecision, inherent variability, or subjective interpretation.

 Fuzzification helps to capture this uncertainty by representing variables

as fuzzy sets with associated membership functions.

1. Support Fuzzification (s-fuzzification):

 Process:

 In support fuzzification, the membership degree 𝜇𝑖μi of an

element 𝑥𝑖xi is kept constant.

 The element 𝑥𝑖xi is transformed into a fuzzy set 𝑄(𝑥𝑖)Q(xi), which

expresses the fuzzy nature of 𝑥𝑖xi.

 This transformation is done for each element in the crisp set.

 Expression:

 If A is a fuzzy set represented as 𝐴={(𝑥𝑖,𝜇𝑖)∣𝑥𝑖∈𝑋}, the fuzzified set

A~ can be expressed as:

 Here, 𝑄(𝑥𝑖) represents the fuzzified expression of 𝑥𝑖xi.

2. Grade Fuzzification (g-fuzzification):

 Process:

 In grade fuzzification, the element 𝑥𝑖 is kept constant.

 The membership degree 𝜇𝑖 is expressed as a fuzzy set.

 Expression:

 This method allows for the membership grades themselves to

exhibit fuzziness, providing a more nuanced representation.

Importance of Fuzzification

 Translation to Linguistic Variables:

 Fuzzification enables the conversion of numerical data into linguistic

4.1.9 – Methods of Fuzzification

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

149 Periyar University – CDOE| Self-Learning Material

terms (e.g., "cold," "warm," "hot") that are more intuitive for human

reasoning.

 For example, a temperature of 9°C might be fuzzified to "cold" based on

predefined membership functions.

 Decision-Making:

 By fuzzifying input values, systems can make more informed and flexible

decisions.

 For instance, determining whether to wear a jacket based on a

temperature reading involves interpreting the crisp value in the context

of fuzzy sets representing different temperature ranges.

 Handling Uncertainty:

 Fuzzification accommodates the uncertainty and imprecision inherent in

many real-world scenarios.

 This makes fuzzy logic systems robust and adaptable to varying

conditions and incomplete information.

Example

Consider the crisp value of temperature, say 9°C. Fuzzification might translate this into

fuzzy sets like "cold" or "cool" with varying degrees of membership. This allows for

more human-like reasoning in decision-making processes, such as deciding to wear

a jacket.

Fuzzification is a critical step in fuzzy logic that bridges the gap between precise

numerical data and the inherently imprecise nature of real-world information. By

converting crisp values into fuzzy sets, fuzzification enables more flexible, intuitive,

and robust decision-making processes, effectively handling the uncertainty and

vagueness present in many applications.

The process of assigning membership values to fuzzy variables can be

approached in several ways, each leveraging different techniques and principles.

Here’s a detailed look at various methods used to assign membership values, focusing

initially on the intuition method, followed by a brief overview of the other methods.

1. Intuition

Description:

4.1.10 – Methods For Assigning Membership Values

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

150 Periyar University – CDOE| Self-Learning Material

 The intuition method relies on human intelligence, experience, and

understanding to develop membership functions.

 This method requires a deep knowledge of the application area to accurately

assign membership values.

Example:

 Consider the assignment of membership values to the fuzzy variable "weight"

in kilograms, with linguistic terms such as "very light," "light," "normal," "heavy,"

and "very heavy."

 An expert might intuitively decide the membership functions based on their

experience and understanding of the weight ranges in the context of thin or

normal-weight persons.

Characteristics:

 Overlapping Capacity: The curves representing different linguistic terms

should overlap to some extent, allowing smooth transitions between categories.

 Context-Dependent: The specific shape of the membership functions can vary

depending on the context, such as the population being considered.

Other Methods for Assigning Membership Values

1. Inference:

 Uses logical reasoning and knowledge-based systems to derive

membership values.

 Often involves if-then rules to define how input variables relate to fuzzy

sets.

2. Rank Ordering:

 Involves ordering data points based on their attributes and then

assigning membership values according to their ranks.

 Useful when data can be naturally ordered or ranked.

3. Angular Fuzzy Sets:

 Uses angular measurements to define membership values.

 Applicable in specific contexts where angular relationships provide

meaningful insights.

4. Neural Networks:

 Employs artificial neural networks to learn and assign membership

values.

 Neural networks can be trained on data to automatically generate

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

151 Periyar University – CDOE| Self-Learning Material

membership functions.

5. Genetic Algorithms:

 Uses evolutionary algorithms to optimize membership functions.

 Membership values are assigned through a process of selection,

crossover, and mutation to find the best fit for the data.

6. Inductive Reasoning:

 Based on observing patterns and regularities in data to assign

membership values.

 Involves generalizing from specific instances to broader categories.

Additional Methods

 Soft Partitioning:

 Divides the data into overlapping clusters, where each data point can

belong to multiple clusters with varying degrees of membership.

 Meta Rules:

 Utilizes higher-level rules that guide the assignment of membership

values based on predefined criteria or patterns.

 Fuzzy Statistics:

 Combines statistical methods with fuzzy logic to assign membership

values.

 Useful for handling uncertainty and variability in data.

Visual Example: Membership Functions for Weight

In the example of weight, membership functions might be depicted as follows:

 Very Light: A triangular membership function peaking at a low weight.

 Light: Overlapping with "very light," extending to a slightly higher weight range.

 Normal: Covering the mid-range weights, with overlaps on both sides.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

152 Periyar University – CDOE| Self-Learning Material

 Heavy: Overlapping with "normal," extending to higher weights.

 Very Heavy: Peaking at the highest weights.

These curves help translate precise weight measurements into fuzzy categories that

can be used for further processing in fuzzy logic systems.

Assigning membership values is a crucial step in fuzzy logic, transforming crisp

data into fuzzy sets that can be used for decision-making. Various methods, from

intuitive approaches to sophisticated algorithms, provide flexibility in capturing the

uncertainty and vagueness inherent in real-world data. Each method has its unique

advantages and is chosen based on the specific requirements of the application.

3. Inference Method for Assigning Membership Values

The inference method uses deductive reasoning and knowledge, particularly from

geometry, to assign membership values to fuzzy variables. This method leverages

geometric shapes such as triangles to derive membership functions based on

established rules and relationships within the geometry domain. Here, we discuss the

inference methodology through the example of triangular shapes and extend the

concept to other geometric shapes.

Inference Method with Triangular Shapes

Defining the Universe

Consider the universe of triangles defined by the set U:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

153 Periyar University – CDOE| Self-Learning Material

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

154 Periyar University – CDOE| Self-Learning Material

These membership functions can be derived using geometric principles and

deductive reasoning based on the properties of the shapes involved.

The inference method for assigning membership values utilizes deductive

reasoning and geometric knowledge to define membership functions. By

understanding the properties of various geometric shapes, such as triangles,

trapezoids, and Gaussian curves, we can derive accurate and meaningful membership

functions for different fuzzy variables. This approach ensures that the membership

values are logically consistent and aligned with the underlying geometric principles.

Rank Ordering

Rank ordering involves assigning membership values based on preferences,

comparisons, and opinions from individuals or groups. This method leverages the

collective assessment of options to establish an order of membership values for fuzzy

variables. It's commonly used in contexts such as polling, ranking students, or making

purchase decisions.

Process

1. Gather Opinions: Collect preferences from individuals or groups regarding the

items to be ranked.

2. Pairwise Comparisons: Perform comparisons between pairs of items to

determine relative preferences.

3. Aggregate Preferences: Combine the individual preferences to form a

collective ranking.

4. Assign Membership Values: Translate the ranks into membership values for

the fuzzy variable.

Example

To illustrate rank ordering, consider the example of ranking cars based on their overall

desirability:

1. Collect Opinions: Ask a group of people to rate various cars based on criteria

like price, fuel efficiency, comfort, and brand reputation.

2. Pairwise Comparisons: Compare each car with every other car to see which

is preferred more frequently.

3. Aggregate Preferences: Sum the preferences to create an overall ranking of

the cars.

4. Assign Membership Values: Assign membership values to each car based

on its rank. For instance, the top-ranked car could have a membership value of

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

155 Periyar University – CDOE| Self-Learning Material

1, the second-ranked car 0.9, and so on, down to the least preferred car.

This approach provides a systematic way to derive membership values from subjective

preferences.

Angular Fuzzy Sets

Description

Angular fuzzy sets differ from standard fuzzy sets in that they are defined on a universe

of angles, repeating every 2𝜋2π radians. These sets are particularly useful for

representing periodic phenomena and can model linguistic variables with an inherent

cyclical nature.

Example: pH Levels of Wastewater

Consider the pH value of wastewater from a dyeing industry, which is an important

measure to ensure environmental safety. The pH scale ranges from 0 to 14, with 7

being neutral.

1. Linguistic Variables:

 "Neutral (N)" corresponds to 𝜃=0 radians.

 "Exact Base (EB)" and "Exact Acid (EA)" correspond to 𝜃=𝜋/2 radians

and 𝜃=−𝜋/2 radians, respectively.

 Intermediate values represent varying degrees of acidity and basicity,

e.g., "Very Base (VB)" and "Medium Acid (MA)".

2. Representation:

 pH values between 7 and 14 are represented from 0 to 𝜋/2 radians.

 pH values between 0 and 7 are represented from 0 to −𝜋/2 radians.

Angular Fuzzy Set Model for pH

The angular fuzzy set model for pH levels can be visualized as:

In this model:

 Neutral pH (7) corresponds to 𝜃=0.

 Higher pH levels (basic) extend towards 𝜋/2 (e.g., "Very Base").

 Lower pH levels (acidic) extend towards −𝜋/2 (e.g., "Very Acid").

The angular representation helps to easily identify and differentiate between varying

levels of acidity and basicity based on their positions on the angular scale.

Both rank ordering and angular fuzzy sets provide unique and effective

methods for assigning membership values to fuzzy variables. Rank ordering relies on

collective human preferences and pairwise comparisons, while angular fuzzy sets

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

156 Periyar University – CDOE| Self-Learning Material

utilize the periodic nature of angles to model cyclical phenomena, offering clear and

intuitive membership value assignments in different contexts.

Neural Networks for Determining Fuzzy Membership Values

Neural networks can be effectively utilized to derive fuzzy membership

functions for various fuzzy classes within an input data set. This approach involves

training a neural network to map input data points to their corresponding fuzzy

membership values, thus allowing for the classification of data points into fuzzy

classes.

Process

1. Data Collection and Division:

 Collect the input data set and divide it into a training set and a testing

set.

 The training set is used to train the neural network, while the testing set

evaluates the network's performance.

2. Initial Classification:

 Divide the data points into different classes using conventional clustering

techniques.

 For example, in Figure 12-7(A), data points are divided into three

classes: RA, RB, and RC.

3. Assign Initial Membership Values:

 Assign complete membership (value of 1) to the class where a data point

initially belongs.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

157 Periyar University – CDOE| Self-Learning Material

 For instance, a data point with coordinates 𝑥1=0.6 and 𝑥2=0.8 lying in

region RB is assigned a membership value of 1 for class RB and 0 for

classes RA and RC.

4. Neural Network Creation and Training:

 Create a neural network and use the initial data points along with their

membership values for training.

 The network learns to simulate the relationship between coordinate

locations and their corresponding membership values.

5. Iterative Training:

 Continuously train the neural network with additional data points and

their membership values until the network can accurately simulate the

input-output relationships.

 Figures 12-7(B), (E), and (H) depict various stages of the neural network

training process.

6. Testing and Validation:

 Test the trained neural network using the testing data set to ensure it

can accurately classify new data points.

 The final output, shown in Figure 12-7(G), demonstrates the network's

ability to classify data points into one of the fuzzy classes.

7. Determination of Fuzzy Membership Functions:

 Use the trained neural network to determine the membership values of

any input data in the different regions (classes).

 Figure 12-7(I) illustrates the complete mapping of membership values

across various data points and fuzzy classes.

8. Overlap and Interpretation:

 Analyze the overlap between different fuzzy classes, as shown by the

hatched portion in Figure 12-7(C).

 This overlap indicates the regions where data points share membership

across multiple fuzzy classes, reflecting the fuzzy nature of the

classification.

Example

Consider an input training data set with several data points classified into three

fuzzy classes: RA, RB, and RC. A specific data point with coordinates 𝑥1=0.6 and

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

158 Periyar University – CDOE| Self-Learning Material

𝑥2=0.8 lies within region RB, assigning it a membership value of 1 for RB and 0 for RA

and RC.

 Training: The neural network is trained with this data point and its

corresponding membership values, learning the relationship between

coordinates and membership values.

 Iteration: The process continues with additional data points, refining the

network's accuracy.

 Final Output: The trained network can classify new data points and determine

their membership values in each fuzzy class.

Visualization

 Training Process: Figures 12-7(B), (E), and (H) show the stages of training.

 Classified Data Points: Figure 12-7(C) shows the classified data points and

overlapping regions.

 Final Mapping: Figure 12-7(I) shows the final membership values assigned to

new data points.

Using neural networks to determine fuzzy membership functions involves

training a network to map input data points to their respective membership values.

This method leverages the neural network's ability to learn complex relationships,

allowing for accurate classification and fuzzification of data points.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

159 Periyar University – CDOE| Self-Learning Material

Methods for Assigning Membership Values to Fuzzy Variables

Genetic Algorithms

Genetic algorithms (GAs) are inspired by Darwin’s theory of evolution and operate on

the principle of "survival of the fittest." Here's how GAs can be used to determine fuzzy

membership functions:

1. Initialization:

 Assume initial membership functions and shapes for various fuzzy

variables.

2. Encoding:

 Convert these membership functions into bit strings.

3. Concatenation:

 Concatenate these bit strings into longer strings that represent potential

solutions.

4. Fitness Function:

 Define a fitness function to evaluate the fitness of each set of

membership functions. The fitness function in GAs plays a similar role to

the activation function in neural networks, guiding the optimization

process.

5. Evaluation:

 Evaluate the fitness of each set of membership functions using the

fitness function.

6. Genetic Operations:

 Apply genetic operations (selection, crossover, and mutation) to

generate new sets of membership functions.

7. Iteration:

 Repeat the process of generating and evaluating strings until

convergence to an optimal solution is achieved, i.e., the membership

functions with the best fitness value are obtained.

By following these steps, GAs iteratively improve the membership functions, ensuring

they best fit the given data and application context.

12.4.7 Inductive Reasoning

Inductive reasoning uses the principles of entropy minimization to generate

membership functions. This method is well-suited for static, abundant data sets but

less effective for dynamic data due to continual changes in membership functions.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

160 Periyar University – CDOE| Self-Learning Material

Here’s the process:

1. Database Requirement:

 A well-defined database of input-output relationships is necessary.

2. Establish Fuzzy Threshold:

 Determine a fuzzy threshold between data classes.

3. Entropy Minimization:

 Use the entropy minimization principle to find the initial threshold line.

4. Segmentation:

 Segment the data into two classes based on the threshold.

5. Iterative Partitioning:

 Repeat the partitioning process on each class to further divide the data.

This iterative process continues until the data is divided into an optimal

number of classes or fuzzy sets.

6. Threshold Line Drawing:

 Continuously draw threshold lines to classify samples, aiming to

minimize entropy for optimal partitioning.

7. Membership Function Determination:

 Based on the partitioned data, determine the shape and parameters of

the membership functions.

Laws of Induction by Christeuseu (1980):

1. Irreducible Outcomes:

 The induced probabilities are consistent with all available information

and maximize the entropy of the set of outcomes.

2. Independent Observations:

 The induced probability of a set of observations is proportional to the

probability density of the induced probability of a single observation.

3. Entropy Minimization Rule:

 The induced rule that is consistent with all available information and

minimizes entropy is used to develop membership functions.

By using inductive reasoning, membership functions are generated through a

systematic process of partitioning data, minimizing entropy, and ensuring optimal

classification.

 Genetic Algorithms use evolutionary principles to optimize membership

functions through iterative improvement guided by a fitness function.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

161 Periyar University – CDOE| Self-Learning Material

 Inductive Reasoning employs entropy minimization to segment data and

generate membership functions, suitable for static data environments.

Both methods offer robust techniques for deriving fuzzy membership functions, each

with unique advantages depending on the nature of the data and the specific

application requirements.

Defuzzification is a crucial process in fuzzy logic systems, particularly in

applications and engineering fields where crisp, actionable control outputs are

necessary. This process converts fuzzy results, which are often expressed as fuzzy

sets, into precise, non-fuzzy control actions. Here, we outline various defuzzification

methods commonly employed:

1. Centroid Method (Center of Gravity or Center of Area)

The Centroid Method is one of the most popular and widely used defuzzification

techniques. It calculates the center of gravity of the fuzzy set's area. The crisp value

z∗ is computed as follows:

2. Bisector Method

This method finds a point z∗ that divides the area under the fuzzy set into two equal

halves. Mathematically, it satisfies:

3. Mean of Maximum (MOM)

The Mean of Maximum method takes the average of the maximum values of the fuzzy

set. If the fuzzy set has multiple points with the maximum membership value, 𝑧∗z∗ is

the average of these points:

4.1.11 – Defuzzification Methods

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

162 Periyar University – CDOE| Self-Learning Material

4. Smallest of Maximum (SOM)

The Smallest of Maximum method selects the smallest value among the points that

have the highest membership grade. Formally:

5. Largest of Maximum (LOM)

Conversely, the Largest of Maximum method chooses the largest value among the

points with the highest membership grade:

6. Weighted Average Method

This method computes a weighted average of all possible values, where weights are

the membership values. It's given by:

7. Max Membership Principle (Height Method)

The Max Membership Principle selects the value with the highest membership grade.

If there are multiple such values, the method usually selects the smallest one:

Selection of Defuzzification Methods

The choice of defuzzification method depends on various factors:

 Computational Complexity: Some methods, like the Centroid Method, can be

computationally intensive due to the need for integration, while others, like the

Max Membership Principle, are simpler to implement.

 Application Suitability: Different methods may be more appropriate

depending on the specific requirements of the application. For example, the

Centroid Method provides a balanced outcome and is commonly used in control

systems.

 Output Plausibility: The selected method should produce outputs that are

sensible and useful from an engineering perspective.

No single defuzzification method is universally superior; the best method often

depends on the context and the specific requirements of the application.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

163 Periyar University – CDOE| Self-Learning Material

Lambda-Cuts for Fuzzy Sets and Fuzzy Relations

Lambda-cuts, also known as alpha-cuts, are a fundamental concept in fuzzy

set theory. They allow the transformation of a fuzzy set into a family of crisp sets,

facilitating various operations and analyses.

A lambda-cut (or alpha-cut) of a fuzzy set A~ is defined as follows:

4.1.12 – Lambda Cuts For Fuzzy Sets and Fuzzy Relations

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

164 Periyar University – CDOE| Self-Learning Material

Application and Visualization

The lambda-cuts provide a powerful means to analyze and visualize fuzzy sets

and relations. They enable the conversion of fuzzy data into crisp subsets, facilitating

operations such as intersection, union, and complementation in a more intuitive and

manageable way.

Example: Lambda-Cuts in Practice

Consider a fuzzy set representing the concept of "tall" heights with the following

membership function:

These cuts illustrate how different lambda values filter the elements of the fuzzy

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

165 Periyar University – CDOE| Self-Learning Material

set, providing crisp subsets for analysis.

Lambda-cuts are an essential tool in fuzzy set theory, enabling the

transformation of fuzzy sets and relations into crisp subsets. By leveraging properties

such as union, intersection, and nestedness, lambda-cuts facilitate a deeper

understanding and manipulation of fuzzy data, crucial for practical applications in

various fields.

Defuzzification is the process of converting fuzzy output into precise, non-fuzzy

quantities. When dealing with fuzzy outputs comprising multiple membership

functions, defuzzification methods become crucial for obtaining meaningful results.

The max-membership principle, also known as the height method, is applicable

to peak output functions. It involves selecting the output value 𝑥∗x∗ where the

membership function is at its peak. Mathematically, it can be expressed as:

 This method is suitable for fuzzy outputs with clearly defined peaks, as illustrated in

Figure 13-4.

4.1.13 – Defuzzification Methods

4.1.14 – Max Membership Principle

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

166 Periyar University – CDOE| Self-Learning Material

The centroid method, also known as the center of mass or center of area

method, is widely used in defuzzification. It calculates the weighted average of the

output values based on their membership functions. Mathematically, it is represented

as:

Here, the numerator represents the moment of the fuzzy output, while the denominator

represents the total area under the membership function curve. This method is

depicted in Figure 13-5.

The weighted average method is applicable to symmetrical output membership

functions. Each membership function is weighted by its maximum membership value,

and the output is computed as the weighted sum of the maximum values. The formula

for this method is:

where 𝑥𝑖 represents the maximum of the 𝑖𝑡ℎ membership function. This method is

illustrated in Figure 13-6, where 𝑎 and 𝑏 represent the means of their respective

shapes.

4.1.15 – Centroid Method

4.1.16 – Weighted Average Method

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

167 Periyar University – CDOE| Self-Learning Material

The mean-max membership method, also known as the middle of the maxima,

calculates the output as the mean of the points where the membership function is

maximum. Mathematically, it is expressed as:

This method is depicted in Figure 13-7, where 𝑎a and 𝑏b are as shown in the figure.

In the center of sums method, the algebraic sum of the individual fuzzy subsets

is employed. The output is determined by calculating the center of gravity of the

summed areas of all fuzzy sets involved. This method is depicted in Figure 13-8 and

is particularly suitable for fast computations.

4.1.17– Mean Max Membership

4.1.18 – Center of Sums

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

168 Periyar University – CDOE| Self-Learning Material

The center of largest area method is useful when the output consists of at least

two convex fuzzy subsets that are non-overlapping. The defuzzified value is biased

towards one side of the membership function, determined by the center of gravity of

the convex subregion with the largest area. This method is illustrated in Figure 13-9.

This method determines the smallest value of the domain with maximized

membership in each individual output fuzzy set. It involves finding the first and last

maxima in the union of all individual output fuzzy sets. Figure 13-10 illustrates this

method, where the first maxima is also the last maxima and represents a distinct

4.1.19 – Center of Largest Area

4.1.20 – First of Maxima

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

169 Periyar University – CDOE| Self-Learning Material

maximum.

These methods offer diverse approaches to defuzzification, catering to various types

of fuzzy outputs and analytical requirements. By selecting an appropriate

defuzzification method, practitioners can effectively extract precise information from

fuzzy outputs for decision-making and control applications.

Let Us Sum Up

In this unit on fuzzy logic, we began by exploring classical sets and their operations,

before delving into the concept of fuzzy sets. We discussed the properties of fuzzy

sets and their representation through membership functions. Fuzzification methods

were introduced, allowing us to convert crisp quantities into fuzzy ones based on

membership values. Additionally, we examined defuzzification techniques, including

lambda-cuts for both fuzzy sets and fuzzy relations. Finally, we explored various

defuzzification methods such as the Max-Membership Principle, Centroid Method,

Weighted Average Method, Mean Max Membership, Center of Sums, Center of

Largest Area, and First of Maxima. These methods provide tools for extracting precise

information from fuzzy outputs, aiding decision-making in complex systems.

Check Your Progress

1. Which of the following best describes fuzzy logic?

a. Logic based on clear, binary decisions

b. Logic that deals with imprecision and uncertainty

c. Logic exclusively used in mathematics

d. Logic focused on deterministic outcomes

2. What is the primary purpose of fuzzy sets?

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

170 Periyar University – CDOE| Self-Learning Material

a. To represent crisp, well-defined boundaries

b. To handle uncertainty and vagueness

c. To eliminate ambiguity in decision-making

d. To simplify complex mathematical operations

3. What property distinguishes fuzzy sets from classical sets?

a. They have crisp, clearly defined boundaries

b. They can have elements with varying degrees of membership

c. They do not allow for imprecision or uncertainty

d. They cannot represent real-world phenomena accurately

4. Fuzzification is the process of:

a. Converting fuzzy quantities into crisp quantities

b. Introducing randomness into decision-making

c. Representing precise values with fuzzy logic

d. Removing uncertainty from decision-making processes

5. Which method is commonly used for defuzzification?

a. Max-Membership Principle

b. Deterministic decision-making

c. Binary logic gates

d. Probability theory

6. What is the purpose of lambda-cuts in fuzzy sets and relations?

a. To simplify membership functions

b. To eliminate uncertainty

c. To convert fuzzy quantities into crisp ones

d. To analyze the properties of fuzzy sets and relations

7. The centroid method in defuzzification calculates the:

a. Maximum membership value

b. Average of the membership values

c. Intersection of fuzzy sets

d. Total area under the membership function curve

8. Weighted Average Method in defuzzification is suitable for:

a. Symmetrical output membership functions

b. Asymmetrical output membership functions

c. Fuzzy sets with clear boundaries

d. Fuzzy sets with binary membership values

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

171 Periyar University – CDOE| Self-Learning Material

9. What does the Mean-Max Membership method in defuzzification calculate?

a. The mean of the maximum membership values

b. The sum of the maximum membership values

c. The median of the membership values

d. The mode of the membership values

10. Center of Sums method in defuzzification calculates the:

a. Weighted average of the membership values

b. Total area under the membership function curve

c. Sum of the individual fuzzy subsets

d. Maximum height in the union of fuzzy sets

11. What is the primary function of the Center of Largest Area method in

defuzzification?

a. To find the highest membership value

b. To determine the largest fuzzy set

c. To calculate the mean of the maximum membership values

d. To identify the convex subregion with the largest area

12. First of Maxima (Last of Maxima) method in defuzzification selects the:

a. First fuzzy set in the union

b. Last fuzzy set in the union

c. Fuzzy set with the maximum membership value

d. Fuzzy set with the minimum membership value

13. Fuzzy logic is primarily concerned with:

a. Precise, deterministic outcomes

b. Handling uncertainty and imprecision

c. Boolean algebra

d. Linear programming

14. Fuzzy sets allow for:

a. Crisp, binary membership values

b. Varying degrees of membership

c. Clear boundaries between elements

d. Deterministic decision-making

15. The centroid method in defuzzification is also known as:

a. Max-Membership Principle

b. Center of Gravity method

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

172 Periyar University – CDOE| Self-Learning Material

c. Weighted Average Method

d. Mean-Max Membership

16. Lambda-cuts are used to:

a. Convert fuzzy quantities into crisp quantities

b. Simplify fuzzy relations

c. Analyze properties of fuzzy sets and relations

d. Determine the mean of fuzzy values

17. The Weighted Average Method in defuzzification is applicable for:

a. Asymmetrical output membership functions

b. Symmetrical output membership functions

c. Crisp output values

d. Deterministic decision-making

18. The Mean-Max Membership method in defuzzification calculates the:

a. Mean of the maximum membership values

b. Total area under the membership function curve

c. Sum of the maximum membership values

d. Median of the membership values

19. Center of Sums method in defuzzification calculates the:

a. Weighted average of the membership values

b. Maximum height in the union of fuzzy sets

c. Total area under the membership function curve

d. Sum of the individual fuzzy subsets

20. First of Maxima (Last of Maxima) method in defuzzification selects the:

a. First fuzzy set in the union

b. Last fuzzy set in the union

c. Fuzzy set with the maximum membership value

d. Fuzzy set with the minimum membership value

21. Fuzzy logic primarily deals with:

a. Deterministic outcomes

b. Uncertainty and imprecision

c. Crisp, binary decisions

d. Linear programming

22. Which property distinguishes fuzzy sets from classical sets?

A) They have crisp, clearly defined boundaries

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

173 Periyar University – CDOE| Self-Learning Material

B) They can have elements with varying degrees of membership

C) They do not allow for imprecision or uncertainty

D) They cannot represent real-world phenomena accurately

23. Fuzzification is the process of:

A) Converting fuzzy quantities into crisp quantities

B) Introducing randomness into decision-making

C) Representing precise values with fuzzy logic

D) Removing uncertainty from decision-making processes

b. 24.Which method is commonly used for defuzzification?

A) Max-Membership Principle

B) Deterministic decision-making

C) Binary logic gates

D) Probability theory

24. 25.What is the purpose of lambda-cuts in fuzzy sets and relations?

A) To simplify membership functions

B) To eliminate uncertainty

C) To convert fuzzy quantities into crisp ones

D) To analyze the properties of fuzzy sets and relations

25. 26.The centroid method in defuzzification calculates the:

A) Maximum membership value

B) Average of the membership values

C) Intersection of fuzzy sets

D) Total area under the membership function curve

26. Weighted Average Method in defuzzification is suitable for:

A) Symmetrical output membership functions

B) Asymmetrical output membership functions

C) Fuzzy sets with clear boundaries

D) Fuzzy sets with binary membership values

27. What does the Mean-Max Membership method in defuzzification calculate?

A) The mean of the maximum membership values

B) The sum of the maximum membership values

C) The median of the membership values

D) The mode of the membership values

28. Center of Sums method in defuzzification calculates the:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

174 Periyar University – CDOE| Self-Learning Material

A) Weighted average of the membership values

B) Total area under the membership function curve

C) Sum of the individual fuzzy subsets

D) Maximum height in the union of fuzzy sets

29. What is the primary function of the Center of Largest Area method in

defuzzification?

A) To find the highest membership value

B) To determine the largest fuzzy set

C) To calculate the mean of the maximum membership values

D) To identify the convex subregion with the largest area

Unit Summary

In summary, this unit on fuzzy logic provided a comprehensive introduction to

the fundamental concepts and techniques used in dealing with uncertainty and

imprecision in decision-making processes. Beginning with classical sets and

operations, we progressed to fuzzy sets, exploring their properties and representation

through membership functions. Fuzzification methods were discussed as a means of

converting crisp quantities into fuzzy ones, while defuzzification techniques were

examined for extracting precise information from fuzzy outputs. Lambda-cuts were

introduced for both fuzzy sets and relations, and various defuzzification methods,

including the Max-Membership Principle, Centroid Method, Weighted Average

Method, Mean Max Membership, Center of Sums, Center of Largest Area, and First

of Maxima, were explored in detail. These methods provide valuable tools for handling

uncertainty and making informed decisions in real-world applications where precise

information is lacking or ambiguous.

Glossary

1. Classical Sets:

 Traditional mathematical sets where elements have a clear, binary

membership status—either they belong to the set or they do not.

2. Operations on Classical Sets:

 Basic set operations such as union, intersection, and complement

applied to classical sets.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

175 Periyar University – CDOE| Self-Learning Material

3. Fuzzy Sets:

 Sets whose elements have degrees of membership, ranging between 0

and 1, rather than a binary membership status.

4. Properties of Fuzzy Sets:

 Characteristics of fuzzy sets, such as normality, convexity, and

support, which describe their structure and behavior.

5. Fuzzy Relations:

 Relations between fuzzy sets, which express how elements from one

set relate to elements in another, with degrees of membership.

6. Membership Functions:

 Functions that define how each point in the input space is mapped to a

degree of membership between 0 and 1.

7. Fuzzification:

 The process of transforming crisp (precise) input values into fuzzy

values, represented by membership functions.

8. Methods of Membership Value Assignments:

 Techniques used to determine the degree of membership of elements

in a fuzzy set, such as expert opinion, algorithmic methods, or

experimental data.

9. Defuzzification:

 The process of converting fuzzy results, typically derived from fuzzy set

operations, back into crisp values.

10. Lambda-Cuts (λ-cuts):

 A method for converting a fuzzy set into a crisp set by including all

elements with a membership value greater than or equal to a specified

threshold (λ).

11. Max-Membership Principle:

 A defuzzification method where the output is the point with the highest

degree of membership in the fuzzy set.

12. Centroid Method:

 Also known as the center of area or center of gravity method, it is the

most commonly used defuzzification method and calculates the center

of the area under the membership function curve.

13. Weighted Average Method:

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

176 Periyar University – CDOE| Self-Learning Material

 A defuzzification technique valid for symmetrical membership

functions, where each membership function is weighted by its

maximum membership value.

14. Mean-Max Membership:

 Also known as the middle of the maxima, it averages the locations of

the maximum membership values.

15. Center of Sums:

 A defuzzification method that uses the algebraic sum of individual fuzzy

subsets instead of their union, though it can double-count intersecting

areas.

16. Center of Largest Area:

 This method chooses the center of gravity of the convex subregion with

the largest area in the output fuzzy set.

17. First of Maxima:

 A method that selects the smallest value of the domain with the highest

membership value.

18. Last of Maxima:

 A method that selects the largest value of the domain with the highest

membership value.

19. Strong λ-cut Set:

 A crisp set that includes all elements of a fuzzy set whose membership

values are strictly greater than a specified threshold λ.

20. Weak λ-cut Set:

 A crisp set that includes all elements of a fuzzy set whose membership

values are greater than or equal to a specified threshold λ.

21. Inductive Reasoning:

 A method used to generate membership functions based on entropy

minimization and backward inference from known data.

22. Genetic Algorithms:

 Optimization techniques based on the principles of natural selection

and evolution used to determine optimal fuzzy membership functions.

23. Neural Networks:

 Computational models inspired by the human brain that can be trained

to simulate the relationship between input data and fuzzy membership

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

177 Periyar University – CDOE| Self-Learning Material

values.

24. Radial Basis Function (RBF):

 A type of neural network used for function approximation, which can

also be employed to determine fuzzy membership values.

25. Entropy Minimization:

 A principle used in inductive reasoning to determine the most probable

distribution of membership values by minimizing uncertainty.

26. Symmetrical Membership Functions:

 Fuzzy sets where the membership function is symmetric around a

central value.

27. Crisp Set:

 A traditional set where elements have a clear, binary membership

status—either belonging to the set or not.

28. Fuzzy Threshold:

 A specific value used in inductive reasoning to separate data into

different fuzzy sets or classes.

29. Union of Fuzzy Sets:

 The combination of two or more fuzzy sets using the max-operator,

resulting in the outer envelope of the combined membership functions.

30. Supremum (Sup):

 The least upper bound of a set, used in methods like the first of

maxima and last of maxima.

Self-Assessment Questions

1. Explain the difference between classical sets and fuzzy sets.

2. Explain the concept of fuzzification and its importance in fuzzy logic systems.

3. Explain the role of membership functions in fuzzy logic.

4. Explain how genetic algorithms can be used to determine fuzzy membership

functions.

5. Explain the process and purpose of defuzzification in fuzzy logic systems.

6. Assess the effectiveness of the centroid method for defuzzification in fuzzy

systems.

7. Assess the applicability of the mean-max membership method in real-world

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

178 Periyar University – CDOE| Self-Learning Material

scenarios.

8. Assess the limitations of using the max-membership principle for

defuzzification.

9. Assess the impact of lambda-cuts on the precision of fuzzy relations.

10. Assess the advantages and disadvantages of using inductive reasoning to

generate membership functions.

11. Evaluate the importance of fuzzification in handling real-world data.

12. Evaluate the role of defuzzification in the context of control systems.

13. Evaluate the benefits of using fuzzy logic over traditional binary logic in complex

systems.

14. Evaluate the effectiveness of different defuzzification methods for varying types

of membership functions.

15. Evaluate the use of genetic algorithms for optimizing membership functions

compared to other methods.

16. Detail the steps involved in the fuzzification process.

17. Detail the process of applying lambda-cuts to a fuzzy set.

18. Detail the centroid method of defuzzification with an example.

19. Detail the differences between strong λ-cut and weak λ-cut sets.

20. Detail the process of using inductive reasoning to generate membership

functions.

21. Detail how the weighted average method is applied in defuzzification.

22. Detail the steps involved in the center of sums method of defuzzification.

23. Detail the differences between the first of maxima and last of maxima methods.

24. Detail the process of generating fuzzy membership functions using genetic

algorithms.

Activities / Exercises / Case Studies

Activities

1. Fuzzification and Defuzzification Practice:

 Take a simple dataset and practice converting crisp values to fuzzy

values (fuzzification) using different membership functions. Then, apply

various defuzzification methods to convert the fuzzy values back to crisp

values.

2. Membership Function Design:

 Design different types of membership functions (triangular, trapezoidal,

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

179 Periyar University – CDOE| Self-Learning Material

Gaussian) for a given set of data points. Discuss how the shape of the

membership function affects the fuzzification and defuzzification

processes.

3. Lambda-Cut Application:

 Apply lambda-cuts to a fuzzy set with known membership values and

observe the resulting crisp sets. Vary the lambda value and discuss how

it affects the size and composition of the resulting sets.

4. Neural Network for Fuzzy Membership:

 Implement a simple neural network to classify data points into different

fuzzy classes. Train the network with a given dataset and evaluate its

performance in determining membership values for new data points.

Exercises

1. Fuzzification and Defuzzification:

 Given a set of crisp input values, perform fuzzification using a triangular

membership function. Then, apply the centroid method to defuzzify the

fuzzy values back to crisp values.

2. Genetic Algorithms for Membership Functions:

 Implement a basic genetic algorithm to optimize membership functions

for a given dataset. Evaluate the fitness of each membership function

and determine the best set of membership functions.

3. Inductive Reasoning for Membership Functions:

 Use inductive reasoning to generate membership functions for a

complex dataset. Apply entropy minimization to partition the dataset into

different classes and create the corresponding membership functions.

4. Comparison of Defuzzification Methods:

 Compare the results of different defuzzification methods (max-

membership, centroid, weighted average) on a given fuzzy output.

Discuss which method produces the most accurate or useful results for

the specific scenario.

Case Studies

1. Fuzzy Logic in Control Systems:

 Analyze a case study where fuzzy logic is used in a control system (e.g.,

temperature control, motor speed control). Discuss how fuzzification,

inference, and defuzzification are applied in the system and the benefits

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

180 Periyar University – CDOE| Self-Learning Material

of using fuzzy logic over traditional control methods.

2. Fuzzy Logic in Decision Making:

 Explore a case study where fuzzy logic is used for decision making in a

complex environment (e.g., medical diagnosis, financial forecasting).

Evaluate the effectiveness of fuzzy logic in handling uncertainty and

imprecision compared to conventional decision-making methods.

3. Application of Lambda-Cuts in Image Processing:

 Study a case where lambda-cuts are applied to image processing tasks,

such as edge detection or image segmentation. Discuss how lambda-

cuts help in converting fuzzy pixel values to crisp values and the impact

on the quality of the processed images.

4. Optimization of Membership Functions using Genetic Algorithms:

 Review a case study where genetic algorithms are used to optimize

membership functions for a fuzzy system (e.g., fuzzy classification,

pattern recognition). Analyze the steps involved in the genetic algorithm

and the improvements achieved in the system's performance.

5. Neural Networks and Fuzzy Systems Integration:

 Examine a case study where neural networks are integrated with fuzzy

systems to enhance their capabilities (e.g., adaptive fuzzy controllers,

fuzzy-neural classifiers). Discuss the advantages and challenges of

combining these two approaches and the results achieved in the case

study.

Answers for Check Your Progress

Module

s

S. No. Answers

Module

1

 1. B) They can have elements with varying degrees of

membership

 2. A) Converting fuzzy quantities into crisp quantities

 3. A) Max-Membership Principle

 4. D) To analyze the properties of fuzzy sets and

relations

 5. D) Total area under the membership function curve

 6. A) Symmetrical output membership functions

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

181 Periyar University – CDOE| Self-Learning Material

 7. A) The mean of the maximum membership values

 8. C) Sum of the individual fuzzy subsets

 9. D) To identify the convex subregion with the largest

area

 10. C) To convert a fuzzy matrix into a crisp matrix

 11. B) Medium acid

 12. D) 1

 13. C) Triangle

 14. B) Gaussian

 15. A) 60°

 16. B) 90°

 17. C) IR

 18. B) 90 - |90|

 19. D) Induction Reasoning

 20. A) Triangle

 21. B) To determine the order of the membership

 22. B) They can have elements with varying degrees of

membership

 23. A) Converting fuzzy quantities into crisp quantities

 24. A) Max-Membership Principle

 25. D) To analyze the properties of fuzzy sets and

relations

 26. B) Average of the membership values

 27. A) Symmetrical output membership functions

 28. A) The mean of the maximum membership values

 29. C) Sum of the individual fuzzy subsets

 30. D) To identify the convex subregion with the largest

area

Suggested Readings

1. Ross, T. J. (2005). Fuzzy logic with engineering applications. John Wiley &

Sons.

CDOE - ODL M.C.A – SEMESTER II SOFT COMPUTING

182 Periyar University – CDOE| Self-Learning Material

2. Buckley, J. J., & Eslami, E. (2002). An introduction to fuzzy logic and fuzzy

sets (Vol. 13). Springer Science & Business Media.

3. Bonissone, P. P. (1997). Fuzzy logic and soft computing: technology

development and applications. General Electric CRD, Schenectady NY,

12309.

Open-Source E-Content Links

1. GeeksforGeeks - Fuzzy Set

2. Wikipedia - Fuzzy Sets

3. Towards Data Science - Fuzzy Logic

4. GeeksforGeeks - Operations on Fuzzy Sets

5. GeeksforGeeks - Properties of Fuzzy Sets

6. Coursera - Fuzzy Logic

7. GeeksforGeeks - Fuzzy Relations

8. GeeksforGeeks - Membership Functions

9. Coursera - Introduction to Fuzzy Logic and Fuzzy Systems

10. Towards Data Science - Fuzzification and Defuzzification

11. GeeksforGeeks - Defuzzification Methods

12. Wikipedia - Defuzzification

References

1. Kaufmann, A. (1973). Introduction to the theory of fuzzy sets. Fundamental

theoretical elements.

2. Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer

Science & Business Media.

3. Dubois, D., & Prade, H. (1999). Possibilistic logic in decision. Fuzzy Logic and

Soft Computing, 3-17.

https://en.wikipedia.org/wiki/Fuzzy_set
https://www.coursera.org/learn/fuzzy-logic
https://www.coursera.org/learn/introduction-to-fuzzy-logic-and-fuzzy-systems
https://en.wikipedia.org/wiki/Defuzzification

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

180 Periyar University – CDOE| Self-Learning Material

Genetic Algorithm

UNIT V – GENETIC ALGORITHM

Unit V: GENETIC ALGORITHM: Introduction -Biological Background - Basic

Operators and terminologies in Genetic algorithm- Search Space- Effects of genetic

Operators – Traditional Vs Genetic Algorithm - Simple GA- General Genetic

Algorithm- The Scheme Theorem - Applications

Section Topic Page No.

UNIT – V

Unit Objectives

Section 5.1 Genetic Algorithm 181

5.1.1 Introduction 181

5.1.2 Biological Background 183

5.1.3 Basic Operators and Terminologies in Genetic Algorithm 186

5.1.4 Search Space 194

5.1.5 Effects of Genetic Operators 195

5.1.6 Traditional vs Genetic Algorithm 197

5.1.7 Simple GA 199

5.1.8 General Genetic Algorithm 201

5.1.9 The Scheme Theorem 202

5.1.10 Applications 204

 Let Us Sum Up 206

 Check Your Progress 206

5.2 Unit- Summary 211

5.3 Glossary 211

5.4 Self- Assessment Questions 212

5.5 Activities / Exercises / Case Studies 214

5.6 Answers for Check your Progress 216

5.7 References and Suggested Readings 217

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

181 Periyar University – CDOE| Self-Learning Material

UNIT OBJECTIVE

The objective of this unit is to provide a comprehensive understanding of

genetic algorithms, drawing on their biological foundations and explaining key

operators and terminologies. Students will explore the concept of search space and

the impact of genetic operators on optimization processes. By comparing traditional

algorithms with genetic algorithms, learners will appreciate the unique advantages and

challenges of the latter. The unit will cover the structure and functioning of simple and

general genetic algorithms, including the scheme theorem. Practical applications will

be emphasized, demonstrating the utility of genetic algorithms in various fields such

as engineering, computer science, and artificial intelligence.

What are Genetic Algorithms?

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on

the evolutionary principles of natural selection and genetics. They represent a

sophisticated use of random search methods to solve optimization problems. While

GAs incorporate randomness, they are not entirely random; they utilize historical

information to guide the search towards regions of higher performance in the search

space. The fundamental techniques in GAs simulate natural evolutionary processes,

particularly those based on Charles Darwin’s concept of “survival of the fittest.” In

nature, competition for resources ensures that the fittest individuals prevail, and GAs

mimic this by evolving solutions over generations.

 Why Genetic Algorithms?

Genetic Algorithms offer several advantages over conventional algorithms:

1. Robustness: Unlike older AI systems, GAs do not easily break when inputs

are altered or when there is reasonable noise.

2. Efficiency in Large Search Spaces: GAs are particularly effective in large,

multimodal state-spaces or n-dimensional surfaces. They perform better than

traditional optimization techniques such as linear programming, heuristic

5.1 GENETIC ALGORITHM

5.1.1 – Introduction to Genetic Algorithm

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

182 Periyar University – CDOE| Self-Learning Material

methods, and depth-first or breadth-first searches.

21.2 Biological Background

The science of genetics, derived from the Greek word "genesis" meaning "to

grow" or "to become," explores the mechanisms responsible for similarities and

differences within species. Genetics helps distinguish between heredity and variation,

explaining the resemblances and differences during the evolutionary process.

Concepts in GAs are derived directly from natural evolution and heredity.

21.2.1 The Cell

In every animal or human cell, numerous small "factories" work together, with

the cell nucleus at the center. The nucleus contains the genetic information necessary

for the cell's functions.

Figure 21-1 illustrates the anatomy of an animal cell and its nucleus, highlighting

components such as the mitochondria, endoplasmic reticulum, Golgi apparatus, and

chromosomes.

Chromosomes

Chromosomes store all genetic information and are composed of DNA

(deoxyribonucleic acid). Humans have 23 pairs of chromosomes, each divided into

parts called genes. Genes encode the properties and characteristics of an individual.

The various possible combinations of genes for a particular trait are called alleles. For

instance, the gene for eye color has alleles for black, brown, blue, and green eyes.

The set of all possible alleles in a population forms the gene pool, which determines

the potential variations in future generations. The size of the gene pool indicates the

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

183 Periyar University – CDOE| Self-Learning Material

genetic diversity within the population. The complete set of genes for a specific species

is known as the genome, and each gene has a unique position called a locus.

In most organisms, genomes are spread across multiple chromosomes. However, in

GAs, all genes are typically stored on a single chromosome, making chromosomes

and genomes synonymous in this context.

Figure 21-2 presents a model of a chromosome, illustrating its structure and the

position of genes.

Linking Genetics and Evolutionary Theory

The modern evolutionary theory combines Charles Darwin's principles of

natural selection with Gregor Mendel's hereditary principles. Initially, Darwin's theory

of evolution through natural selection and Mendel's genetics were seen as unrelated.

It wasn't until the 1920s that it was demonstrated that these concepts were not

contradictory but complementary. This synthesis laid the foundation for the modern

evolutionary theory, integrating natural selection with genetic inheritance.

Application of Evolutionary Concepts in Optimization

John Holland's 1975 work, "Adaptation in Natural and Artificial Systems,"

extended the principles of natural evolution to optimization problems, laying the

groundwork for the first Genetic Algorithms. These algorithms have since been

developed further, becoming powerful adaptive methods for solving complex

optimization problems, such as scheduling, game playing, and organizing tasks.

By simulating natural evolutionary processes, Genetic Algorithms can achieve

remarkable solutions to real-world problems, much like natural evolution produces

efficient and well-adapted organisms.

5.1.2 – Biological Background

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

184 Periyar University – CDOE| Self-Learning Material

Genotype and Phenotype

In genetics, the complete set of genes in an individual is referred to as the

genotype. The physical manifestation of these genes, as expressed in the individual's

characteristics, is called the phenotype. One key aspect of evolution is that natural

selection operates on the phenotype, while reproduction involves the recombination

of genotypes. This relationship highlights the importance of morphogenesis—the

process by which the genotype is expressed as the phenotype—bridging the gap

between selection and reproduction.

In higher organisms, chromosomes contain two sets of genes, known as diploids.

When there are conflicting values between gene pairs, the dominant gene will

determine the phenotype, while the recessive gene remains present and can be

passed to the offspring. Diploidy allows for greater genetic diversity, which is beneficial

in variable or noisy environments. However, most Genetic Algorithms (GAs) use

haploid chromosomes, where only one set of each gene is stored, simplifying the

genetic representation by avoiding the need to determine dominance and

recessiveness.

Figure 21-3 illustrates the development of genotype to phenotype.

Reproduction

Reproduction in biological systems can occur through two primary processes:

1. Mitosis: This process involves the replication of genetic information to create

new cells identical to the parent cell. Mitosis is a method for growing

multicellular structures, such as organs.

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

185 Periyar University – CDOE| Self-Learning Material

Figure 21-4 depicts the mitosis form of reproduction.

2. Meiosis: This process underlies sexual reproduction. During meiosis, two

gametes are produced, which conjugate during reproduction to form a zygote,

the new individual. This process allows for the sharing and recombination of

genetic information from both parents.

Figure 21-5 shows the meiosis form of reproduction.

Natural Selection

The concept of natural selection, as described by Darwin, involves the

preservation of favorable traits and the rejection of unfavorable ones. Variation among

individuals of a species and among the offspring of the same parents leads to a

struggle for survival, with more individuals born than can survive. Those with

advantageous traits have a higher chance of surviving and reproducing—this is known

as "survival of the fittest." For example, giraffes with longer necks can access food

from tall trees and the ground, whereas animals with shorter necks, like goats and

deer, can only access ground-level food. Natural selection thus plays a critical role in

determining which traits are passed on to future generations.

Terminology Comparison

Table 21-1 compares terminology used in natural evolution and genetic algorithms:

Natural Evolution Genetic Algorithm

Chromosome String

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

186 Periyar University – CDOE| Self-Learning Material

Natural Evolution Genetic Algorithm

Gene Feature or character

Allele Feature value

Locus String position

Genotype Structure or coded string

Phenotype Parameter set, a decoded structure

Traditional Optimization and Search Techniques

Genetic Algorithms represent an advanced approach to optimization and

search techniques, differing significantly from traditional methods such as linear

programming, heuristic searches, depth-first searches, breadth-first searches, and

praxis. GAs are designed to handle complex, large, and multimodal search spaces

more efficiently by simulating the evolutionary processes of natural selection and

genetic recombination.

Operators in Genetic Algorithm

Genetic Algorithms (GAs) use several fundamental operators to simulate

natural evolutionary processes. These include encoding, selection, recombination,

and mutation. Each operator has various types and implementations tailored to

specific problem-solving contexts.

Encoding

Encoding is the process of representing individual genes, and it can be

performed using various data structures like bits, numbers, trees, arrays, lists, or other

objects. The choice of encoding method depends on the problem being solved. Here

are some common encoding methods:

Binary Encoding

Binary encoding represents chromosomes as strings of binary digits (0s and

1s). Each bit can represent a characteristic of the solution, and the entire string can

represent a solution or a number.

Example of Binary Encoding:

5.1.3 – Basic Operators in Genetic Algorithm

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

187 Periyar University – CDOE| Self-Learning Material

Chromosome 1 1 1 1 0 1 0 0 0 1 1 0 1 0

Chromosome 2 0 1 1 1 1 1 1 1 1 1 0 0 0

Figure 21-15 illustrates binary encoding.

Binary encoding offers a wide range of possible chromosomes with fewer alleles.

However, it may not be the most natural representation for some problems,

necessitating corrections after genetic operations.

Octal Encoding

Octal encoding uses strings of octal numbers (0–7).

Example of Octal Encoding:

Chromosome 1 0 3 4 6 7 2 1 6

Chromosome 2 1 5 7 2 3 3 1 4

Figure 21-16 illustrates octal encoding.

Hexadecimal Encoding

Hexadecimal encoding uses strings of hexadecimal numbers (0–9, A–F).

Example of Hexadecimal Encoding:

Chromosome 1 9 C E 7

Chromosome 2 3 D B A

Figure 21-17 illustrates hexadecimal encoding.

Permutation Encoding (Real Number Coding)

Permutation encoding represents chromosomes as sequences of numbers, often

used for ordering problems.

Example of Permutation Encoding:

Chromosome A 1 5 3 2 6 4 7 9 8

Chromosome B 8 5 6 7 2 3 1 4 9

Figure 21-18 illustrates permutation encoding.

Permutation encoding is suitable for problems requiring a specific order but may

require corrections to maintain consistency after crossover and mutation operations.

Value Encoding

In value encoding, each chromosome is a string of values related to the

problem. This method is effective for problems involving complex values like real

numbers or characters.

Example of Value Encoding:

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

188 Periyar University – CDOE| Self-Learning Material

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B A B D J E

Chromosome C (back) (back) (right) (forward) (left)

Figure 21-19 illustrates value encoding.

Value encoding is particularly useful for specialized problems but may necessitate the

development of new genetic operators tailored to the specific problem.

Tree Encoding

Tree encoding is primarily used for evolving program expressions in genetic

programming. Each chromosome is a tree of objects such as functions and commands

from a programming language.

Selection

Selection is the process of choosing individuals from a population to breed and

create the next generation. Common selection methods include:

1. Roulette Wheel Selection: Individuals are selected with a probability

proportional to their fitness.

2. Tournament Selection: A subset of individuals is chosen at random, and the

best from this subset is selected.

3. Rank-Based Selection: Individuals are ranked based on fitness, and selection

probabilities are assigned based on rank.

Recombination (Crossover)

Recombination, or crossover, combines the genetic information of two parent

chromosomes to produce new offspring. Common types include:

1. Single-Point Crossover: A single crossover point is chosen, and the segments

beyond this point are swapped between the parents.

2. Two-Point Crossover: Two crossover points are chosen, and the segments

between them are swapped.

3. Uniform Crossover: Each gene is chosen randomly from one of the parents.

Mutation

Mutation introduces random changes to individual genes in a chromosome, helping to

maintain genetic diversity. Common mutation types include:

1. Bit Flip Mutation: A binary bit is flipped from 0 to 1 or vice versa.

2. Swap Mutation: Two genes in a chromosome are swapped.

3. Gaussian Mutation: For real-valued genes, a small Gaussian random value is

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

189 Periyar University – CDOE| Self-Learning Material

added.

These operators work together to evolve populations of solutions towards optimal

solutions over successive generations, mimicking the process of natural evolution.

Selection

Selection in Genetic Algorithms (GAs) is the process of choosing parents from

the population for crossing over to create the next generation. This step aims to favor

individuals with higher fitness, as these individuals are more likely to produce fitter

offspring, thus driving the evolution of the population towards better solutions.

The selection process involves several key concepts and methods, which are

discussed below.

Selection Process

Selection involves randomly picking chromosomes from the population

according to their fitness values. The higher the fitness, the better the chance of being

selected. The selection pressure is the degree to which fitter individuals are favored,

influencing the convergence rate of the GA. High selection pressure can lead to faster

convergence but risks premature convergence to suboptimal solutions, while low

selection pressure can slow down the evolution process.

Two main types of selection schemes are:

1. Proportionate-Based Selection: Individuals are selected based on their

fitness values relative to others in the population.

2. Ordinal-Based Selection: Individuals are selected based on their rank within

the population, regardless of the actual fitness values.

Scaling functions can also be used to redistribute the fitness range of the population,

adapting the selection pressure as needed.

Roulette Wheel Selection

Roulette Wheel Selection is a traditional GA selection technique. It assigns

each individual a slice of a "roulette wheel" proportional to their fitness. The wheel is

spun, and the individual where the wheel stops is selected. This method provides a

moderate selection pressure.

Implementation Steps:

1. Sum the fitness values of all individuals in the population.

2. Spin the wheel 𝑁N times (where 𝑁N is the population size).

3. For each spin, select an individual based on a random target value within the

total fitness sum.

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

190 Periyar University – CDOE| Self-Learning Material

Random Selection

Random Selection chooses parents randomly from the population, without

regard to fitness. This method is more disruptive to genetic codes and generally less

effective at improving population fitness compared to other methods.

Rank Selection

Rank Selection addresses the problem of disproportionate selection chances

when fitness values vary greatly. It ranks individuals by fitness and assigns selection

probabilities based on these ranks. This method ensures a slower but more stable

convergence by maintaining diversity.

Two Methods for Rank Selection:

1. Select a pair of individuals at random and choose based on a random threshold.

2. Select two individuals at random and choose the one with the highest fitness.

Tournament Selection

Tournament Selection involves selecting a subset of individuals (the

tournament) and choosing the best among them as a parent. This method provides

adjustable selection pressure and maintains population diversity.

Steps:

1. Conduct a tournament among 𝑁𝑢Nu individuals.

2. Insert the tournament winner into the mating pool.

3. Repeat until the mating pool is filled.

Boltzmann Selection

Boltzmann Selection simulates the process of simulated annealing, gradually

increasing the selection pressure by lowering a temperature parameter. This method

helps balance exploration and exploitation, reducing the risk of premature

convergence.

Probability of Selection:

where T decreases logarithmically over generations.

Stochastic Universal Sampling (SUS)

SUS ensures zero bias and minimum spread by mapping individuals to

contiguous segments of a line and placing equally spaced pointers over the line. Each

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

191 Periyar University – CDOE| Self-Learning Material

pointer selects an individual, ensuring a more even distribution of selection

probabilities.

Steps:

1. Assign segments on a line proportional to fitness values.

2. Place 𝑁N equally spaced pointers on the line.

3. Select individuals based on pointer positions.

Example: For six individuals with a random number in the range [0,61], if the random

number is 0.1, the selected individuals might be 1, 2, 3, 4, 6, and 8.

These selection methods collectively aim to balance selection pressure and population

diversity, driving the GA towards optimal solutions efficiently and effectively.

Crossover (Recombination)

Crossover, also known as recombination, is a fundamental operator in genetic

algorithms (GAs) responsible for generating new offspring by combining genetic

material from two parent solutions. Unlike mutation, which introduces random

changes, crossover aims to produce offspring with traits inherited from both parents,

potentially leading to improved solutions.

Process Overview

1. Selection of Parents: Two parent solutions are randomly selected from the

mating pool created during the selection process.

2. Crossover Point Selection: A crossover point is randomly chosen along the

length of the parent chromosomes.

3. Exchange of Genetic Material: Genetic material beyond the crossover point

is exchanged between the parents, creating two new offspring.

Types of Crossover Techniques

1. Single-Point Crossover

 Description: In single-point crossover, a single crossover point is randomly

selected, and the genetic material beyond this point is exchanged between

parents.

 Example:

2. Two-Point Crossover

 Description: Two crossover points are randomly selected, and the genetic

material between these points is exchanged between parents.

 Advantages: Allows for more thorough exploration of the solution space

compared to single-point crossover.

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

192 Periyar University – CDOE| Self-Learning Material

 Example:

3. Uniform Crossover

 Description: Each gene in the offspring is randomly selected from one of the

parents based on a binary crossover mask.

 Advantages: Allows for a mixture of genes from both parents in the offspring.

 Example:

4. Three-Parent Crossover

 Description: Three parents are randomly chosen, and each bit in the offspring

is determined by comparing the corresponding bits in the first two parents. If

they match, the bit is taken from the first parent; otherwise, it is taken from the

third parent.

 Example:

5. Other Techniques

 Multipoint Crossover: Involves more than two crossover points.

 Shuffle Crossover: Shuffles variables before exchanging genetic material to

remove positional bias.

 Ordered Crossover: Used for order-based problems like assembly line

balancing.

 Partially Matched Crossover (PMX): Used in problems like the Traveling

Salesman Problem (TSP) to ensure each position is found exactly once in each

offspring.

Crossover Probability

The crossover probability (𝑃𝑐Pc) is a crucial parameter that determines how

often crossover is performed during reproduction. It influences the balance between

exploration (diversity) and exploitation (quality). A higher 𝑃𝑐Pc increases the likelihood

of exploring new solutions, while a lower 𝑃𝑐Pc focuses more on exploiting existing

solutions.

Crossover plays a vital role in the exploration and exploitation of the solution

space in genetic algorithms, contributing to the diversity and quality of the offspring

population. Adjusting the crossover probability allows for fine-tuning the balance

between exploration and exploitation based on the problem characteristics and

algorithm performance.

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

193 Periyar University – CDOE| Self-Learning Material

Mutation in Genetic Algorithms

Mutation is a critical operator in genetic algorithms (GAs) that introduces

random changes to individual solutions in the population. Its primary role is to prevent

the algorithm from getting stuck in local optima by maintaining genetic diversity and

exploring new areas of the solution space.

Purpose of Mutation

 Diversity Maintenance: Mutation helps maintain genetic diversity in the

population by introducing new genetic structures.

 Exploration: It facilitates exploration of the solution space by randomly

modifying some building blocks of solutions.

 Prevention of Local Optima: Mutation serves as an insurance policy against

the loss of genetic material, helping the algorithm escape from local optima

traps.

Mutation Strategies

1. Flipping:

 Description: Flipping involves changing the value of individual bits with

a small probability, typically around 1𝐿L1, where 𝐿L is the length of the

chromosome.

 Example:

2. Interchanging:

 Description: Two random positions in the chromosome are selected,

and the bits at these positions are interchanged.

 Example:

3. Reversing:

 Description: A random position in the chromosome is chosen, and the

bits adjacent to that position are reversed.

 Example:

Mutation Probability

 Definition: The mutation probability (𝑃𝑚Pm) determines how often mutations

occur.

 Impact: A higher 𝑃𝑚Pm increases the likelihood of mutation, leading to more

exploration but risking loss of population diversity.

 Optimization: Setting an appropriate 𝑃𝑚Pm is crucial to balance exploration

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

194 Periyar University – CDOE| Self-Learning Material

and exploitation effectively.

Termination Conditions for Genetic Algorithms

 Maximum Generations: Stop after a specified number of generations.

 Elapsed Time: End the process after a certain duration.

 No Change in Fitness: Halt if there is no improvement in fitness for a specified

number of generations.

 Stall Generations/Time Limit: Stop if there is no improvement in fitness over

consecutive generations or within a time interval.

 Mutation is a vital component of genetic algorithms, ensuring diversity, exploration,

and preventing the algorithm from getting trapped in local optima. It complements

crossover by introducing randomness and maintains genetic diversity in the

population, ultimately contributing to the effectiveness of the optimization process.

Evolutionary computing, including genetic algorithms (GAs), has its roots in the

1960s with the work of I. Rechenberg on "Evolution Strategies." John Holland further

developed the concept of GAs in his book "Adaptation in Natural and Artificial

Systems" in 1975. GAs were conceived as heuristic methods based on the principle

of "survival of the fittest," proving to be valuable tools for solving search and

optimization problems.

Search Space

 Definition: The search space, also known as the state space, comprises all

feasible solutions among which the desired solution exists.

 Representation: Each point in the search space corresponds to a possible

solution, and its quality is determined by its fitness value, specific to the problem

being solved.

 Objective: GAs aim to find the best solution within the search space, typically

minimizing or maximizing an objective function.

 Challenges: Local minima and the choice of the starting point pose challenges

in GA-based optimization.

Example of Search Space

 Visualization: Search spaces can be visualized graphically, where each axis

represents a dimension of the solution space, and points represent individual

5.1.4 – Search Space

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

195 Periyar University – CDOE| Self-Learning Material

solutions.

 Example: Figure 21-6 illustrates an example of a search space, where points

represent possible solutions, and the objective function is likely to be minimized

or maximized.

The search space in genetic algorithms represents the set of all feasible

solutions to a problem. GAs traverse this space iteratively, evolving a population of

potential solutions towards better fitness values. Understanding the search space and

its characteristics is crucial for designing effective genetic algorithm-based

optimization strategies.

Genetic Algorithms World

Genetic algorithms (GAs) introduce several key features and characteristics that

distinguish them as powerful optimization tools:

1. Stochastic Nature: GAs operate with randomness at their core. Random

procedures are essential for selection and reproduction, allowing for diverse

exploration of the solution space.

2. Population-Based Approach: Unlike traditional optimization methods, GAs

maintain a population of solutions rather than focusing on a single candidate

solution. This population-based approach enables the algorithm to explore a

diverse range of solutions and recombine them to potentially discover better

ones.

3. Robustness: GAs exhibit robustness, meaning they perform consistently well

across a broad range of problem types. They are highly versatile and can be

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

196 Periyar University – CDOE| Self-Learning Material

applied to various problem domains without specific requirements.

4. Parallelization: The population-based nature of GAs makes them well-suited

for parallelization, enabling efficient utilization of computational resources for

faster optimization.

The success of GAs has led to the emergence of other evolutionary algorithms, such

as evolution strategy and genetic programming, which share the principles of natural

evolution. These algorithms are collectively referred to as Evolutionary Algorithms.

Limitations and Considerations

Despite their strengths, GAs have certain limitations and considerations:

 Global Optimization: GAs are not guaranteed to find the global optimum

solution to a problem. They aim to find "acceptably good" solutions but may not

always converge to the absolute best solution.

 Specialized Techniques: In some cases, specialized techniques tailored to

specific problem domains may outperform GAs in terms of speed and accuracy.

 Hybridization: Hybridizing GAs with other optimization techniques can

sometimes lead to improved performance, especially when dealing with

complex problems.

It's essential to maintain an objective perspective when using GAs and not view them

as a universal solution for all optimization problems. While they offer powerful

capabilities, they are most effective when applied appropriately to suitable problem

domains.

Evolution and Optimization

Biological Analogies

The optimization process in genetic algorithms draws inspiration from natural

evolution. Just as species adapt and evolve over time, GAs evolve a population of

candidate solutions towards better fitness values.

Genetic Operators

 Recombination (Crossover): Mimicking sexual reproduction, crossover

involves combining genetic information from two parent solutions to produce

offspring with potentially superior traits.

 Mutation: Mutation introduces random changes to individual solutions, allowing

for exploration of new regions in the solution space.

Through these genetic operators, GAs mimic the process of genetic inheritance and

variation observed in natural evolution, driving the search for optimal solutions in

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

197 Periyar University – CDOE| Self-Learning Material

complex problem spaces.

Traditional Vs Genetic Algorithm

Aspect Genetic Algorithms (GAs)

Traditional Optimization

Techniques

Parameter

Representation

Operate with coded versions of

problem parameters

Work with parameters

themselves

Search Strategy

Operate on a population of points

(strings)

Search from a single

point

Robustness

Utilize population-based approach,

improving robustness

Typically operate on a

single solution

Evaluation Use fitness function for evaluation

Often use derivatives for

evaluation

Transition

Operators Use probabilistic transition operators

Use deterministic

transition operators

In a Genetic Algorithm (GA), individuals and populations play crucial roles in the

search process. Here's a breakdown of these concepts:

Individuals:

An individual in a GA represents a single solution to the optimization problem being

solved. Each individual comprises two main components:

1. Chromosome (Genotype): The raw genetic information that the GA operates

on. It's typically represented as a string or vector of values.

2. Phenotype: The expression of the chromosome in terms of the problem's

model. It represents the solution in a more interpretable format.

Here's a representation of how an individual is structured:

Solution Set (Phenotype): Factor 1 Factor 2 Factor 3 ... Factor N Chromosome

(Genotype): Gene 1 Gene 2 Gene 3 ... Gene N

Genes:

5.1.5 – Traditional Vs Genetic Algorithm

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

198 Periyar University – CDOE| Self-Learning Material

Genes are the basic building blocks of a chromosome in a GA. They represent

individual factors or components of a solution. Each gene is typically represented as

a bit string of arbitrary length. The structure of each gene is defined by phenotyping

parameters, which guide the mapping between genotype and phenotype.

Fitness:

The fitness of an individual represents its suitability or quality as a solution to

the optimization problem. It's determined by evaluating an objective function using the

individual's phenotype. Higher fitness values indicate better solutions, and the fitness

function guides the GA in selecting individuals for further processing.

Populations:

A population in a GA consists of a collection of individuals. It represents the set

of potential solutions being explored by the algorithm at a given iteration. The

population size and composition are crucial factors in the GA's performance. The

population undergoes evolution through processes like selection, crossover, and

mutation to improve the quality of solutions over successive generations.

Here's a summary of the key aspects of populations in GAs:

1. Initial Population Generation: The initial population is typically generated

randomly, though heuristic methods may also be used. It's essential for the

initial population to have sufficient diversity to explore the search space

effectively.

2. Population Size: The size of the population influences the algorithm's

exploration and convergence characteristics. Larger populations increase

exploration but also require more computational resources. The population size

is often chosen based on the problem complexity and available computational

resources.

Individuals and populations are fundamental concepts in GAs, representing the

solutions being explored and the collective set of potential solutions, respectively.

These elements undergo evolutionary processes guided by fitness evaluations to

iteratively improve the quality of solutions.

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

199 Periyar University – CDOE| Self-Learning Material

The simple Genetic Algorithm (GA) you described follows a straightforward

process for evolving a population of solutions. Here's a breakdown of each step in the

process:

1. Initialization:

 Start with a randomly generated population of individuals (chromosomes).

2. Fitness Calculation:

 Evaluate the fitness of each chromosome in the population using a fitness

function.

3. Evolution Loop:

 Repeat the following steps until a termination condition is met:

 Selection:

 Randomly select pairs of parent chromosomes from the current

population based on their fitness.

 Crossover:

 With a certain probability, perform crossover (recombination) on

the selected pairs to create offspring.

 Mutation:

 Mutate the offspring at each locus (gene) with a certain

probability.

 Evaluation:

 Evaluate the fitness of the newly generated offspring.

 Replacement:

 Replace the old population with the new population of offspring.

 Termination:

 If a termination condition is met (e.g., convergence to an optimal

solution), stop the algorithm.

Implementation:

 The GA can be implemented using a loop structure, iterating through

generations until a termination condition is met. The loop includes steps for

selection, reproduction (crossover and mutation), evaluation, and replacement.

Here's a pseudocode representation of the simple GA:

5.1.6 – Simple GA

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

200 Periyar University – CDOE| Self-Learning Material

BEGIN Genetic Algorithm

 Generate initial population;

 Compute fitness of each individual;

 WHILE NOT finished DO

 Select individuals from old generations for mating;

 Create offspring by applying recombination and/or mutation to the selected

individuals;

 Compute fitness of the new individuals;

 Replace old individuals with new ones;

 IF Population has converged THEN

 Set finished = TRUE;

 END IF

 END WHILE

END

This algorithmic description follows the steps you outlined, where the process iterates

until a termination condition is met. The termination condition could be based on the

convergence of the population or a predetermined number of iterations.

The flowchart you mentioned provides a visual representation of the steps involved in

the GA, aiding in understanding and implementation.

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

201 Periyar University – CDOE| Self-Learning Material

The general GA is as follows:

let's summarize the steps of the example:

1. Chromosome Properties:

 Chromosomes are 8-bit sequences.

 Fitness function: 𝑓(𝑥) = number of 1 bits in the chromosome.

 Population size 𝑁=4.

 Crossover probability 𝑝𝑐=0.7.

 Mutation probability 𝑝𝑚=0.001.

 Average fitness of the initial population is 3.0.

2. Selection:

 If B and C are selected, no crossover is performed.

 If B and D are selected, crossover is performed.

3. Mutation:

 If B is mutated, it changes from 1110111011101110 to

0110111001101110.

 If E is mutated, it changes from 1011010010110100 to

1011000010110000.

4. Fitness Evaluation:

 Average fitness of the population after the operations.

5.1.7 – General Genetic Algorithm

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

202 Periyar University – CDOE| Self-Learning Material

5. Tables:

 Table 21-2: Fitness values for the chromosomes.

 Table 21-3: Representation of chromosomes and their fitness values

6. Roulette Wheel Selection:

 Figure 21-14: Illustration of fitness proportionate selection using a

roulette wheel.

Without the specific details of the fitness values for each chromosome and their

representations, we can't generate the tables and figure. If you have the fitness values

and representations for each chromosome, I can help you create the tables and the

roulette wheel selection figure.

The Schema Theorem, proposed by Holland in 1975, provides a fundamental

insight into the behavior of Genetic Algorithms (GAs). It focuses on how GAs evolve

populations of potential solutions over time, particularly regarding the survival and

5.1.8 – The Schema Theorem

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

203 Periyar University – CDOE| Self-Learning Material

propagation of specific patterns, known as schemata, within the solution space.

Here's a breakdown of the key elements and the proof of the Schema Theorem:

Proof Outline:

1. Probability of Selecting Individuals: The proof starts by establishing the

probability of selecting an individual fulfilling schema 𝐻H. This probability is

crucial for understanding how schemata are represented in the population.

2. Expected Number of Selected Individuals: Using the binomial distribution,

the proof calculates the expected number of individuals fulfilling schema 𝐻H in

the population. This calculation considers the number of individuals in the

population, their fitness values, and the probability of selecting individuals.

3. Survival and Propagation through Crossover: The proof then analyzes how

schemata survive and propagate through crossover operations. It considers the

probability that crossover disrupts or preserves schemata, depending on the

crossover points relative to the schema specifications.

4. Overall Probability Estimate: By combining the probabilities of selection and

survival through crossover, the proof derives an overall estimate for the

expected number of individuals fulfilling schema 𝐻H in the next generation.

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

204 Periyar University – CDOE| Self-Learning Material

Survival Probability through Mutation (𝑝𝑀):

 pM represents the probability that a schema 𝐻H remains unchanged

after the mutation operation.

 It's computed based on the probability that all specified positions in 𝐻H

are not mutated, which is (1−𝑝𝑀)𝑂.

By estimating the survival probabilities through crossover (pC) and mutation (𝑝𝑀), we

can analyze the overall likelihood that a string fulfilling schema 𝐻H in the parent

population will produce offspring that also fulfill H after both crossover and mutation

operations. This analysis is crucial for understanding how schemata evolve and persist

through successive generations in a GA.

The Schema Theorem provides valuable insights into how GAs explore and exploit

the solution space. By analyzing the probabilities of selection, crossover, and survival

of schemata, the theorem helps understand the dynamics of population evolution in

GAs. It offers a theoretical foundation for designing and analyzing GA algorithms.

Genetic Algorithms (GAs) are versatile optimization techniques inspired by the

process of natural selection. They have found applications in various fields due to their

ability to efficiently search through large and complex solution spaces. Here are some

prominent applications of GAs:

1. Engineering Design Optimization:

 GAs are extensively used in engineering to optimize complex design

parameters. They are applied in areas such as structural design,

aerodynamics, automotive design, and electronic circuit design.

 In structural design, GAs can optimize parameters such as material

selection, shape, and size to minimize weight while ensuring structural

integrity and performance.

2. Robotics and Control Systems:

 GAs play a crucial role in evolving control strategies for autonomous

robots and robotic systems. They are used to optimize control

parameters for tasks such as path planning, obstacle avoidance, and

5.1.9 – Applications of Genetic Algorithm

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

205 Periyar University – CDOE| Self-Learning Material

coordination among multiple robots.

 In control systems, GAs are employed to tune the parameters of PID

(Proportional-Integral-Derivative) controllers and other control

algorithms for optimal system performance.

3. Financial Modeling and Stock Market Prediction:

 GAs are applied in financial modeling to optimize investment portfolios,

predict stock prices, and perform risk analysis.

 Portfolio optimization involves selecting the best combination of assets

to maximize returns while minimizing risk, and GAs can efficiently

explore the vast space of possible portfolios to find optimal solutions.

4. Data Mining and Pattern Recognition:

 GAs are used in data mining and pattern recognition tasks to discover

hidden patterns, classify data, and optimize feature selection.

 In data clustering, GAs can partition datasets into clusters based on

similarity measures, while in feature selection, they help identify the most

relevant features for classification or regression tasks.

5. Bioinformatics and Computational Biology:

 GAs are employed in bioinformatics for various tasks such as sequence

alignment, protein folding prediction, and gene expression analysis.

 In genome sequencing, GAs aid in assembling DNA sequences and

identifying functional elements within genomes by optimizing sequence

alignment algorithms.

6. Optimization in Manufacturing and Logistics:

 GAs are used in manufacturing and logistics optimization to improve

production scheduling, resource allocation, and supply chain

management.

 They help optimize production processes by minimizing production

costs, maximizing throughput, and reducing bottlenecks in

manufacturing facilities.

7. Artificial Intelligence and Machine Learning:

 GAs are applied in machine learning for feature selection,

hyperparameter optimization, and evolving neural network architectures.

 In evolutionary algorithms, GAs can evolve populations of neural

networks to perform tasks such as image recognition, natural language

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

206 Periyar University – CDOE| Self-Learning Material

processing, and reinforcement learning.

8. Game Design and Optimization:

 GAs are employed in game design and optimization to evolve game

strategies, character behaviors, and game levels.

 They can be used to automatically generate game content, balance

game difficulty, and optimize game mechanics based on player feedback

and preferences.

These applications highlight the wide-ranging utility of Genetic Algorithms across

various domains, making them indispensable tools for solving complex optimization

problems in both academic research and practical real-world scenarios.

Let Us Sum Up

Genetic Algorithms (GAs) leverage principles of natural selection to optimize

solutions in diverse domains. They employ basic operators like selection, crossover,

and mutation to evolve solutions over generations within a defined search space. The

Scheme Theorem provides insights into GA behavior, showing how schemas evolve

and survive. Contrasting traditional methods, GAs excel in exploring complex solution

spaces and adapting to dynamic environments. Their applications span engineering

design, robotics, finance, bioinformatics, manufacturing, AI, game design, and more.

GAs offer a powerful optimization approach, combining biological inspiration with

computational efficiency.

Check Your Progress

1. What principle does Genetic Algorithm (GA) emulate?

A) Natural selection

B) Chemical reactions

C) Electrical conductivity

D) Mechanical motion

2. Which of the following is not a basic operator in GA?

A) Selection

B) Crossover

C) Mutation

D) Encoding

3. Which term refers to the set of all possible solutions in a GA?

A) Solution set

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

207 Periyar University – CDOE| Self-Learning Material

B) Population

C) Search space

D) Offspring space

4. What effect does crossover have on solutions in a GA?

A) Maintains diversity

B) Reduces diversity

C) Increases mutation rate

D) Halts the algorithm

5. The Schema Theorem provides insights into the behavior of GAs regarding:

A) Operator efficiency

B) Schema survival

C) Solution uniqueness

D) Population diversity

6. In comparison to traditional optimization methods, GAs excel in:

A) Speed of convergence

B) Handling convex functions

C) Exploring complex solution spaces

D) Utilizing gradient descent

7. Which of the following is a component of a Simple GA?

A) Genetic drift

B) Principal component analysis

C) Initialization of population

D) Stochastic gradient descent

8. What does the term "fitness function" evaluate in a GA?

A) Probability distribution

B) Chromosome length

C) Solution quality

D) Crossover rate

9. The Schema Theorem establishes a relationship between:

A) Selection pressure and mutation rate

B) Population size and crossover probability

C) Schema fitness and generation count

D) Schema survival and crossover rate

10. In GA, what does mutation primarily contribute to?

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

208 Periyar University – CDOE| Self-Learning Material

A) Maintaining diversity

B) Reproduction

C) Selection pressure

D) Population size

11. What aspect of solutions does crossover primarily focus on in GA?

A) Exploration

B) Exploitation

C) Initialization

D) Evaluation

12. The encoding process in GA involves:

A) Fitness evaluation

B) Generating random solutions

C) Representing solutions as chromosomes

D) Calculating crossover probabilities

13. Which of the following is not a characteristic of Genetic Algorithms?

A) Deterministic

B) Population-based

C) Stochastic

D) Evolutionary

14. The efficiency of Genetic Algorithms is attributed to their ability to:

A) Exploit local optima

B) Explore large solution spaces

C) Avoid global convergence

D) Disregard mutation operations

15. The process of replacing individuals in a population with new offspring is

known as:

A) Reproduction

B) Crossover

C) Replacement

D) Initialization

16. Which term refers to the process of selecting individuals for reproduction

based on their fitness?

A) Crossover

B) Mutation

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

209 Periyar University – CDOE| Self-Learning Material

C) Selection

D) Evaluation

17. In GA, what does the crossover probability determine?

A) Rate of mutation

B) Probability of offspring creation

C) Rate of convergence

D) Population size

18. The main objective of a fitness function in GA is to:

A) Create diverse offspring

B) Ensure survival of all individuals

C) Evaluate the quality of solutions

D) Maintain a constant mutation rate

19. Which of the following is an example of a real-world application of Genetic

Algorithms?

A) Sorting algorithms

B) Image compression

C) Polynomial regression

D) Matrix multiplication

20. Genetic Algorithms are inspired by the process of:

A) Artificial intelligence

B) Natural selection

C) Neural networks

D) Reinforcement learning

21. The crossover operation in GA is analogous to:

A) Asexual reproduction

B) Sexual reproduction

C) DNA replication

D) Mutation

22. What is the primary purpose of mutation in Genetic Algorithms?

A) Increasing population size

B) Enhancing genetic diversity

C) Improving selection pressure

D) Expediting convergence

23. Which factor determines the rate at which new solutions are generated in a

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

210 Periyar University – CDOE| Self-Learning Material

GA?

A) Crossover probability

B) Mutation rate

C) Fitness function

D) Population size

24. The process of creating offspring by combining genetic material from parent

solutions is known as:

A) Crossover

B) Mutation

C) Encoding

D) Selection

25. In GA, what role does selection pressure play?

A) Influences the rate of mutation

B) Determines the size of the population

C) Affects the probability of selection

D) Controls the length of chromosomes

26. Which term refers to the entire collection of potential solutions in GA?

A) Offspring

B) Chromosome

C) Population

D) Fitness landscape

27. Which component of a GA determines the quality of a solution?

A) Population size

B) Crossover rate

C) Fitness function

D) Mutation probability

28. What distinguishes Genetic Algorithms from traditional optimization methods?

A) Dependency on gradient descent

B) Utilization of evolutionary principles

C) Reliance on statistical sampling

D) Requirement for exact mathematical solutions

29. The Schema Theorem provides insights into the behavior of GAs regarding:

A) Convergence speed

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

211 Periyar University – CDOE| Self-Learning Material

B) Operator efficiency

C) Schema survival and evolution

D) Population diversity and size

30. What principle does Genetic Algorithm (GA) primarily rely on for solution

improvement?

A) Random search

B) Iterative refinement

C) Parallel computation

D) Survival of the fittest

Unit Summary

Genetic Algorithms (GAs) utilize natural selection principles to optimize

solutions within defined search spaces. Basic operators such as selection, crossover,

and mutation drive solution evolution. The Schema Theorem sheds light on GA

behavior, emphasizing the survival and evolution of schemas over generations.

Contrasted with traditional methods, GAs excel in exploring complex solution spaces

and adapting to dynamic environments. Their wide-ranging applications include

engineering design, robotics, finance, bioinformatics, manufacturing, AI, and game

design. Overall, GAs offer a potent optimization approach, blending biological

inspiration with computational efficiency.

Glossary

1. Chromosome: A data structure representing a potential solution in a genetic

algorithm, typically encoded as a string of binary digits.

2. Fitness Function: A function that assigns a numerical value to each potential

solution (chromosome) in a genetic algorithm, indicating how well it solves the

problem.

3. Population: A collection of chromosomes representing potential solutions to a

problem in a genetic algorithm.

4. Crossover: A genetic operator in which two parent chromosomes are

combined to create one or more offspring chromosomes, often mimicking

sexual reproduction.

5. Mutation: A genetic operator that introduces random changes to individual

chromosomes in a population, allowing for exploration of new areas of the

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

212 Periyar University – CDOE| Self-Learning Material

search space.

6. Selection: The process of choosing which chromosomes from the current

population will be used to create the next generation, typically based on their

fitness values.

7. Genetic Operator: Operations such as crossover and mutation that are applied

to chromosomes during the evolution of a genetic algorithm population.

8. Search Space: The set of all possible solutions to a problem that a genetic

algorithm explores.

9. Schema: A pattern within chromosomes that represents potential building

blocks of good solutions, often used to analyze the behavior of genetic

algorithms.

10. Convergence: The state in which a genetic algorithm population has stabilized,

typically indicating that further iterations are unlikely to produce significantly

better solutions.

11. Genotype: The genetic representation of an individual, such as the sequence

of genes in a chromosome.

12. Phenotype: The expression of the genotype as an observable trait, such as

the behavior or characteristics of an organism represented by a chromosome.

13. Elitism: A strategy in genetic algorithms where a certain percentage of the

best-performing individuals from the current population are guaranteed to be

included in the next generation unchanged.

14. Diversity: The variety of different solutions present in a population, which is

important for maintaining exploration of the search space.

15. Local Optima: Suboptimal solutions within the search space that appear better

than their neighbors but are not the globally optimal solution.

Self-Assessment Questions

1. Explain the concept of a chromosome in the context of genetic algorithms.

Detail its role in encoding potential solutions and how it contributes to the

optimization process. Assess its effectiveness in representing diverse solutions

within the population. Compare the use of chromosomes in genetic algorithms

to other encoding methods in optimization algorithms.

2. Describe the function of a fitness function in genetic algorithms, providing

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

213 Periyar University – CDOE| Self-Learning Material

detailed insights into how it evaluates potential solutions and influences the

selection process. Assess the importance of designing an appropriate fitness

function for achieving optimal solutions. Compare different approaches to

defining fitness functions in genetic algorithms and their impact on

performance.

3. Explain the role of crossover as a genetic operator in genetic algorithms,

detailing how it combines information from parent chromosomes to generate

offspring. Assess the effectiveness of crossover in exploring the search space

and promoting diversity within the population. Compare the outcomes of using

different crossover techniques and their influence on convergence speed and

solution quality.

4. Detail the concept of the search space in genetic algorithms, elaborating on its

significance in defining the range of potential solutions to a problem. Assess

the impact of search space size on the efficiency and effectiveness of genetic

algorithms. Compare the exploration of search spaces in genetic algorithms to

other optimization techniques and their respective advantages and limitations.

5. Describe the process of selection in genetic algorithms, providing insights into

how individuals are chosen from the current population for reproduction. Assess

the effectiveness of selection strategies in promoting the evolution of high-

quality solutions. Compare different selection methods in genetic algorithms

and their influence on convergence speed and solution diversity.

6. Explain the importance of diversity in genetic algorithms, detailing how it affects

the exploration of the search space and the convergence to optimal solutions.

Assess the mechanisms used to maintain diversity within the population and

their impact on algorithm performance. Compare strategies for preserving

diversity in genetic algorithms to those used in other optimization techniques.

7. Detail the concept of convergence in genetic algorithms, elaborating on its

significance in indicating when the algorithm has reached an optimal solution

or stagnated. Assess the factors that contribute to convergence speed and the

trade-offs between exploration and exploitation. Compare convergence criteria

used in genetic algorithms to those in other optimization methods and their

effectiveness in terminating the algorithm.

8. Explain the role of schema in genetic algorithms, detailing how they represent

potential building blocks of good solutions and influence the evolutionary

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

214 Periyar University – CDOE| Self-Learning Material

process. Assess the importance of schema analysis in understanding algorithm

behavior and guiding optimization efforts. Compare schema-based approaches

in genetic algorithms to other methods for analyzing population dynamics and

solution quality.

Activities / Exercises / Case Studies

1. Activity: Chromosome Design

 Task: Design chromosomes for a genetic algorithm to solve a simple

optimization problem (e.g., the knapsack problem, function

optimization).

 Description: Participants will work individually or in groups to define the

structure of chromosomes, including the representation of genes, gene

encoding schemes, and chromosome length. They will consider the

problem's constraints and objectives to design chromosomes that

effectively encode potential solutions.

 Outcome: Participants will gain practical experience in designing

chromosomes tailored to specific optimization problems, understanding

the importance of encoding schemes and chromosome structure in

genetic algorithms.

2. Exercise: Fitness Function Design

 Task: Develop fitness functions for different optimization problems,

considering various evaluation criteria and solution representations.

 Description: Participants will explore different fitness function

formulations for solving optimization problems such as scheduling,

routing, or function optimization. They will define fitness functions that

accurately evaluate the quality of candidate solutions based on problem-

specific objectives and constraints.

 Outcome: Participants will learn to design fitness functions that

effectively guide the evolutionary process towards optimal solutions,

gaining insight into the role of objective functions in genetic algorithms.

3. Case Study: Application of Genetic Algorithms in Engineering Design

 Task: Analyze real-world engineering design problems and propose

solutions using genetic algorithms.

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

215 Periyar University – CDOE| Self-Learning Material

 Description: Participants will examine case studies where genetic

algorithms have been applied to optimize engineering designs, such as

aircraft wing design, structural optimization, or circuit layout. They will

assess the problem requirements, formulate genetic algorithm

approaches, and analyze the results in terms of solution quality and

computational efficiency.

 Outcome: Participants will understand how genetic algorithms can

address complex engineering design challenges, gaining insights into

practical applications and potential benefits in various industries.

4. Activity: Selection and Crossover Simulation

 Task: Simulate the selection and crossover processes of a genetic

algorithm using a simple example.

 Description: Participants will simulate the selection and crossover

operations of a genetic algorithm using a predefined population of

chromosomes. They will implement selection mechanisms (e.g., roulette

wheel selection, tournament selection) and crossover techniques (e.g.,

single-point crossover, uniform crossover) to generate offspring and

evaluate their fitness.

 Outcome: Participants will gain hands-on experience in understanding

how selection and crossover contribute to the evolutionary process in

genetic algorithms, exploring the impact of different strategies on

population diversity and convergence speed.

5. Exercise: Diversity Preservation Techniques

 Task: Implement diversity preservation techniques within a genetic

algorithm framework.

 Description: Participants will experiment with various mechanisms for

maintaining population diversity, such as elitism, crowding, or speciation.

They will modify a genetic algorithm implementation to incorporate these

techniques and observe their effects on solution quality and

convergence behavior.

 Outcome: Participants will learn practical methods for preserving

diversity in genetic algorithms, understanding their importance in

preventing premature convergence and promoting exploration of the

search space.

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

216 Periyar University – CDOE| Self-Learning Material

6. Case Study: Convergence Analysis

 Task: Analyze the convergence behavior of genetic algorithms for

different optimization problems.

 Description: Participants will investigate the convergence characteristics

of genetic algorithms by analyzing convergence curves and performance

metrics (e.g., fitness progression, population diversity) for various

problem instances. They will compare convergence patterns under

different algorithm configurations and problem settings.

 Outcome: Participants will gain insights into the convergence properties

of genetic algorithms and learn to assess their performance based on

convergence analysis, identifying factors that influence convergence

speed and solution quality.

7. Activity: Schema Analysis and Adaptation

 Task: Perform schema analysis on a population of chromosomes and

adapt genetic operators based on schema insights.

 Description: Participants will analyze the composition and behavior of

schemata within a population of chromosomes, identifying promising

building blocks and potential sources of disruption. They will adjust

genetic operators (e.g., crossover and mutation rates) to favor the

preservation and propagation of beneficial schemata while suppressing

detrimental ones.

 Outcome: Participants will develop skills in schema analysis and

adaptation, learning to fine-tune genetic algorithms based on schema

insights to improve solution quality and convergence performance.

Answers for Check Your Progress

Module

s

S. No. Answers

Module

1

 1. A) Natural selection

2. D) Encoding

3. C) Search space

4. B) Reduces diversity

5. B) Schema survival

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

217 Periyar University – CDOE| Self-Learning Material

6. C) Exploring complex solution spaces

7. C) Initialization of population

8. C) Solution quality

9. D) Schema survival and crossover rate

10. A) Maintaining diversity

11. A) Exploration

12. C) Representing solutions as chromosomes

13. A) Deterministic

14. B) Explore large solution spaces

15. C) Replacement

16. C) Selection

17. B) Probability of offspring creation

18. C) Evaluate the quality of solutions

19. B) Image compression

20. B) Natural selection

 21. B) Sexual reproduction

 22. B) Enhancing genetic diversity

 23. B) Mutation rate

 24. A) Crossover

 25. C) Affects the probability of selection

 26. C) Population

 27. C) Fitness function

 28. B) Utilization of evolutionary principles

 29. C) Schema survival and evolution

 30. D) Survival of the fittest

Suggested Readings

1. Goldberg, D. E. (1994). Genetic and evolutionary algorithms come of age.

Communications of the ACM, 37(3), 113-120.

2. Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

3. Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. John Wiley

& Sons.

CDOE - ODL M.C.A – SEMESTER II UNIT – 5

218 Periyar University – CDOE| Self-Learning Material

4. Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic

programming: an introduction: on the automatic evolution of computer

programs and its applications. Morgan Kaufmann Publishers Inc..

Open-Source E-Content Links

1. GeeksforGeeks - Fuzzy Set

2. Wikipedia - Fuzzy Sets

3. Towards Data Science - Fuzzy Logic

4. GeeksforGeeks - Operations on Fuzzy Sets

5. GeeksforGeeks - Properties of Fuzzy Sets

6. Coursera - Fuzzy Logic

7. GeeksforGeeks - Fuzzy Relations

8. GeeksforGeeks - Membership Functions

9. Coursera - Introduction to Fuzzy Logic and Fuzzy Systems

10. Towards Data Science - Fuzzification and Defuzzification

11. GeeksforGeeks - Defuzzification Methods

12. Wikipedia - Defuzzification

References

1. Back, T. (1996). Evolutionary algorithms in theory and practice: evolution

strategies, evolutionary programming, genetic algorithms. Oxford university

press.

2. Conroy, G. V. (1991). Handbook of genetic algorithms by Lawrence Davis

(Ed.), Chapman & Hall, London, 1991, pp 385,£ 32.50. The Knowledge

Engineering Review, 6(4), 363-365.

https://en.wikipedia.org/wiki/Fuzzy_set
https://www.coursera.org/learn/fuzzy-logic
https://www.coursera.org/learn/introduction-to-fuzzy-logic-and-fuzzy-systems
https://en.wikipedia.org/wiki/Defuzzification

